更可取的最终规则不会改变“连续18个不间断操作”(CUO)的定义。这与确定草案相比,我们建议修改此定义。一些利益相关者认为,它被解释为意味着电力系统的电压故障响应应随着新工厂的增加而不断变化。我们注意到,这不是该规则的目的,并且只要在电源系统电压故障响应中导致材料降解,我们才希望将植物分类为CUO。NSP和AEMO应该承认,随着新的连接设备的添加,响应将固有地改变,但这只是它以实质性负面方式变化的问题。鉴于此反馈,最终规则
许多先进的反应堆概念要求材料在长期使用期间能够抵抗恶劣环境中的各种应力。因此,在某个时候,材料降解(例如蠕变、疲劳、脆化)将开始,如果不加以控制,其发展最终可能导致失效。虽然降解过程根据材料、负载和条件的不同而不同,但它们总是从微观结构水平开始,然后发展到宏观尺度,最终断裂。由于停机检查成本极高,因此最好实施在线状态监测,以保持工厂运行,直到需要维护。超声导波与损伤的相互作用使其非常适合状态监测,如下所述。本文研究的在线状态监测系统的要求是 (i) 耐高温和 (ii) 检测早期损伤的能力。
电子组件是由不同材料组合组成的复杂系统,这些系统会随着第二种热力学定律的变化而发生变化。其质量或功能的损失在降低的电子组件的性能或行为中反映出,这可能会导致其运行寿命的失败。因此,了解材料降解的物理学以及导致其确保组件可靠性的因素至关重要。本文着重于包装材料的降低物理学,这些物理通常暴露于环境和操作负载。本文的内容分为三个部分。首先,提出了包装技术和封装材料的概述。然后,审查了最常见的降解因素和与包装相关的故障模式。最后,讨论了硬件要求,包括专门的传感器,测量技术和数字双胞胎,以捕获降解效果并促进小电子级别的健康监测。
材料和部件老化对于核电站和其他核设施的安全、可靠和经济运行至关重要。老化会影响检查频率、部件维修或更换频率,并最终影响核设施的使用寿命。太平洋西北国家实验室 (PNNL) 的科学家和工程师了解老化的重要性,并运用我们的专业知识开发更坚固的材料,了解材料降解的条件,在缺陷导致故障之前检测出缺陷,并开发修复或减轻老化相关损坏的技术。在 PNNL 进行的研究和开发支持了美国目前运行的轻水反应堆 (LWR) 机组的持续运行,并可以支持部署未来更安全、更经济的核系统。
空间站实验设施(Misse-FF)已飞行了许多材料样品,以研究Leo太空天气暴露对材料和设备的性能和耐用性的影响。我们表现出计划于2022年6月推出的Misse-16任务,在Leo环境中播放了15种小说和充分的材料,持续了六个月。使用RGB/IR摄像机在整个任务中将实时测量光谱反射率的变化。这些时间分辨的数据将作为我们团队正在进行的基于实验室的太空天气交互实验的“太空真相”参考。在模拟的空间天气条件下,MisSE-16数据与重复样品的广泛地面测试的相关性将使材料降解的基本化学模型开发。本文讨论了地面测试活动的初步结果,以收集原始材料和损坏材料的RGB/IR图像,并开发机器学习算法以从颜色图像中提取反射光谱。
本出版物全面回顾了先进水冷反应堆管道可靠性参数评估的良好实践。良好实践是指管道可靠性分析中预期的流程和分析任务,以使结果真实地反映管道结构完整性。管道可靠性是一个复杂的课题,已从各种技术角度进行了广泛的研究(例如从设计规则的制定到材料降解减缓实践的制定)。为了协助成员国应用适当的方法对先进水冷反应堆的管道故障率进行分析,国际原子能机构组织了一个为期三年的协调研究项目,题为《先进水冷反应堆管道故障率评估方法》(2018-2021 年)。本出版物基于使用不同的先进方法在多种分析环境中应用并响应不同国家规范和标准的要求时获得的技术见解。
近年来,太空技术取得了巨大飞跃,提高了人类探索和殖民其他天体的可行性。从这些方面来看,月球和火星已经变得极具吸引力,但长期任务不可避免地需要自主性、适应性和高可靠性。此外,新一代航天器将不得不面对与材料降解和持续暴露于太空环境威胁有关的挑战。因此,必须开发新材料和技术来满足未来任务的要求。本文旨在清晰、有机地概述空间应用材料领域最重要的创新,以及相关的优势和挑战。在介绍了太空中的主要环境因素及其对材料的可能风险和影响之后,作者继续描述空间应用的新型材料,细分为聚合物、金属、半导体、复合材料和混合物。在最终考虑这些创新材料的局限性和未来挑战之前,还简要介绍了制造技术和现场资源利用方面的创新。
演变图(n = 3)。d)37°C 胶原酶溶液中的酶促材料降解(n = 3)。e、f、g、h)光交联后不同水凝胶配方(分别为 40 DoM、60 DoM、80 DoM、100 DoM)的流变频率扫描(0.1 至 100 Hz)(n = 3)。i、j、k、l)根据独立水凝胶材料的频率扫描计算出的 Tan delta(n = 3)。m) 使用不同水凝胶配方的圆形体积打印模型的归一化形状保真度(n = 3)。n) 使用预期的 STL 模型进行形状保真度计算的体积打印模型作为比较,比例尺 = 5 毫米。o、p) 混合 60 DoM 水凝胶的 CAD 模型和光片重建,分别显示东岛雕像和陀螺模型,比例尺 = 2 毫米。
NuSil 的太空级硅胶在低温下保持弹性,在高温下不易分解,在材料反复暴露于极端温度的太空中具有极佳的实用性。低排气(可控挥发性)为了减轻挥发性材料在重要周围设备上凝结,领先的太空计划使用 NuSil 的低排气和超低排气 TM 硅胶来提供所需的弹性保护,以防止污染和材料降解。美国宇航局 (NASA) 和欧洲航天局 (ESA) 要求材料在用于太空之前必须按照 ASTM E595 进行测试,并且必须符合美国宇航局 SP-R-0022A 和欧洲航天局 PSS-014-702 中概述的规格,总质量损失 (TML) ≤ 1.00%,收集的挥发性可冷凝物质 (CVCM) ≤ 0.10%。NuSil 的低排气材料满足或超过这些要求,我们的超低排气 TM 材料比这些标准高出一个数量级,TML ≤ 0.10% 和 CVCM ≤ 0.010%。