半导体技术依赖于通过在半导体基质材料的晶格中控制引入替代杂质(掺杂)来调整基板的电性能的能力,以便调整其电子、光学和/或磁性。1 然而,目前的原位掺杂策略不能轻易扩展到纳米级。随着半导体器件的尺寸缩小到纳米级,半导体内单个原子的标准随机分布变得至关重要,因为均匀掺杂分布的假设不再成立。2,3 目前,科学界正在努力开发一种新技术,以展示纳米级半导体结构的确定性掺杂。传统的掺杂技术主要基于离子注入,即用高能含掺杂剂的离子轰击目标半导体,随后使用高温热处理诱导离子替换晶格中的原子。 1 该技术的主要优势在于可以独立控制半导体主体内的掺杂剂量和杂质原子的深度分布。这种方法已被广泛探索,并已成为微电子领域的主力,因为它可以保证大面积的出色掺杂均匀性。
TM0106-2016对微生物学影响的腐蚀(MIC)的检测,测试和评估在埋入管道类型的微生物类型的外表面以及MIC在埋藏的基于铁质的金属管道的外表面上发生的机制。测试存在细菌,研究结果和解释。TM0194-2014,旨在通过技术领域和服务人员使用的石油和天然气系统中细菌生长的现场监测。描述了用于估计油田系统中发现细菌种群的现场方法。采样方法和用于列举细菌的培养基。TM0212-2018对微生物学内部表面的腐蚀对管道内部影响的腐蚀(MIC)对管道内部表面上的腐蚀(MIC)的腐蚀进行了检测,测试和评估。微生物,MIC机制,采样和测试的类型。研究结果和测试的解释。TM21465-2024分子微生物方法 - 样品处理和实验室处理一组收集,保存和分子微生物学分析(定量PCR和16S rRNA的基于RRNA的分类学分析)的指南,以此为环境样品。本标准中提供的指南旨在提供常见的程序和最佳实践,以通过不同的实验室进行此类分析以产生可比的结果。
可变可再生技术的特征是由于其自然变异性,其自然变异性具有很大程度的间歇性,因此需要利用一系列来源。在这种情况下,经常提出储能系统的使用。有不同的方法来存储和使用这些技术过多的电力。本文旨在评估通过在西班牙市场中存储可变可再生技术的盈余电力而获得的全球变暖排放,并随后在当今的不同最终用途应用中使用它。首先,对科学文献中发表的不同能源存储技术的生命周期评估进行了回顾。然后,此评论中的选定值适用于西班牙存储的可变可再生电力的发射强度,用于计算存储中的GHG节省,并将其用于不同的最终用途。结果表明,在运输应用和电力部门中,将获得最高的避免温室气体排放量的好处。但是,随着电混合物的脱碳化,电池后面的电池使用将不会导致温室气体排放量。使用电力产生热量会导致避免温室发射较低的避免益处,这会随着时间的流逝而降低。的福利将在化学领域的及时提高,因为很少有脱碳化该部门的替代品。必须针对每种特定情况制定特定的存储策略。
螺栓和螺钉相似之处在于,两者都在一端有一个头部,在另一端有一个螺纹,但它们之间有几个不同之处。螺栓的螺纹端总是相对钝,而螺钉的螺纹端可以是钝的也可以是尖的。螺栓的螺纹端必须拧入螺母,但螺钉的螺纹端可以装入螺母或其他内螺纹装置,或直接装入被固定的材料中。螺栓的螺纹部分相当短,握持长度相对较长(无螺纹部分);螺钉的螺纹部分可能较长,握持长度没有明确定义。螺栓组件通常通过转动螺母来拧紧。其头部可能设计为可转动,也可能不设计。螺钉总是设计为通过头部转动。螺钉和螺栓之间的另一个细微但常见的差异是螺钉通常由强度较低的材料制成。
神经网络 167 2014 42 130 抗压强度 92 2015 32 85 混凝土 54 2014 25 45 机器学习 34 2019 26 29 建模 32 2011 21 29 预测 22 2017 23 22 支持向量机 19 2018 11 17 深度学习 17 2019 13 13 回归 17 2015 20 17 高性能混凝土 15 2015 15 14 粉煤灰 13 2014 14 12 再生骨料混凝土 13 2016 15 13 弹性模量 12 2014 15 11 人工智能 11 2016 15 9 沥青混凝土 11 2018 6 9 随机森林 10 2019 7 7 自密实混凝土 10 2013 6 8 抗弯强度 9 2018 11 9 混合料设计 9 2013 11 9 腐蚀 8 2017 9 6 耐久性 8 2015 14 8 模糊逻辑 8 2011 9 7 高强度混凝土 8 2013 10 8 力学性能 8 2018 11 8 无损检测 8 2015 9 8 剪切强度 8 2013 5 7 声发射 7 2017 5 6 ANFIS 7 2015 12 7 水泥砂浆 7 2016 6 7 动态模量 7 2018 5 6 遗传编程 7 2014 7 7 钢筋混凝土 7 2016 6 6 碳化 6 2014 10 6 水泥 6 2013 10 6 高温 6 2017 7 5 纳米二氧化硅 6 2017 7 5 优化 6 2014 12 6 孔隙率 6 2015 7 6 硅灰 6 2014 9 6 强度 6 2011 9 4 粘结强度 5 2015 5 5 土聚合物 5 2017 5 5 图像处理 5 2017 6 5 微观结构 5 2015 6 5 矿渣 5 2011 7 5
在不影响储能器件电化学性能的同时,将电致变色等多功能特性集成到储能器件中,可以有效促进器件多功能化的发展。与无机电致变色材料相比,有机材料具有制备简便、成本低、颜色对比度大等显著优势,其中大部分聚合物材料表现出优异的电化学性能,可广泛应用于储能器件的设计和开发。本文重点介绍有机电致变色材料在储能器件中的应用,详细讨论了不同类型有机物的作用机理、电化学性能以及有机电致变色材料在相关器件中的不足之处。
大量核素和电子的自组织导致物质出现不同相。相代表一种可以在空间上无限复制的组织方式,其特性会随着外场的变化而不断变化,与其他相不同。因此,当材料经历相变时,某些系统特性会发生变化。相变的一般特征是,它要么涉及根据相变的朗道范式 1 – 3 的序参量的不连续性,要么涉及拓扑不变量的变化 4、5。发现、表征和控制物质的不同相是凝聚态物理学和材料科学的核心任务。特别是,对二维系统中相变的研究在促进我们对相变的理解方面发挥了至关重要的作用(图 1)。 2D 材料 6 – 10 是可以在两个方向上无限复制,但在第三个方向上具有原子级厚度的物质。例如,单层 MoS 2 的厚度为 6.7 Å,在通过机械剥离 6 制备的实验室样品中,平面内厚度通常为微米,因此,其长宽比为 ~10 3 或更大。为了进行比较,一张典型的 A4 大小的纸(~100 μm × 29.7 cm × 21 cm)的长宽比也相似,为 ~10 3 。虽然 2D ↔ 3D/1D 相变无疑是有趣的讨论主题,但在这里,我们重点关注 2D → 2D 转变。最早对 2D 相变的研究大多是理论上的;例如二维 Ising 自旋模型的精确解 11 、 Hohenberg–Mermin–Wagner 定理的提出 12 , 13 以及 Kosterlitz–Thouless 转变的发现 14 , 15 (图 1 )。20 世纪 80 年代初,半导体技术的进步使得人们能够实验研究半导体界面和强磁场下的二维电子系统,从而带来了突破性的
量子发射器已成为基本科学和新兴技术的重要工具。近年来,12 eld的重点已转移到探索和识别新的量子系统,该系统由原子上薄的二维材料的新兴库启用。在这篇综述中,我们强调了2D系统中量子发射器工程技术的当前状态,重点是过渡金属二烷核化合物(TMDCS)和六角形氮化物。我们首先要回顾TMDC的进度,重点是发射机工程,调整其光谱特性以及观察层间激子的能力。然后,我们讨论HBN中的发射器,并专注于发射器的起源,工程和新兴现象 - 跨越超分辨率成像和光学自旋读数。我们通过讨论在具有等离子和介电光子腔的2D宿主中整合发射器的实践进步,并由量子光 - 形式相互作用支撑。我们结束了实践芯片量子光子应用的途径,并在这项研究中强调了挑战和机遇。
转化和生物学,但现在已扩展到基于纳米材料(NM)载体的使用。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。 13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。 尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。 在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。 然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。 我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。 尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。