b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
【摘要】以往利用人工智能在CT图像上辅助诊断结肠炎的研究,多以消化道造影剂使用后的结肠壁厚度作为特征,但诊断准确率并不高。本研究验证了结肠炎脂肪条带(HU)的CT值是结肠炎检测模型中一个有用的特征。从187例非造影结肠炎CT图像中,制作将患处切成128×128矩阵的原始图像、擦除脂肪条带以外结构的掩模图像、仅显示脂肪条带的阈值图像。SVM分类器输出原始图像、掩模图像、阈值图像的分类准确率,结果显示掩模图像和阈值图像的分类准确率较原始图像有所提高,说明脂肪条带是一个分类准确率较高的特征。
表面区域附近的电子状态可能与散装状态不同,这对于理解在表面和半导体,能量和催化剂中的各种物理现象中至关重要。在这里,我们通过将具有纤维控制的贵重气体沉积贵重气体,报告了角度分辨光发射光谱的异常表面区域带增强效应。与常规的表面污染相反,在贵族气体吸附的情况下,表面区域SB带的强度可以增强三倍以上。同时,对增强的表面区域带观察到了孔掺杂效应,其他频带几乎不变。掺杂效果更明显,较重的贵重气体。我们提出,贵族天然气原子有选择地将碱金属空缺位点填充在地面上,从而改善了表面状况,增强了表面区域带,并有效地将其与Pauli排斥机制相兴奋。我们的结果提供了一种独特而可逆的方法,可以通过受控的表面贵族加气沉积来改善表面条件和调整表面区域。
Elber 在 70 年代早期发现疲劳裂纹可以在拉伸载荷下闭合,并假设疲劳裂纹扩展 (FCG) 将由 D K eff = K max � K op 控制,其中 K max 和 K op 分别是应力强度因子的最大值和开口值。该假设可以合理化在使用载荷下观察到的许多瞬态效应,但它无法解释许多其他效应,如在高 R = K min / K max 下过载后 FCG 的延迟或停止,当 K min > K op 时;在高度可变的 D K eff 下以恒定速率进行的 FCG;在给定 R 下停止的裂纹可以在较低的 R 下重新启动生长而不改变其 D K eff;或 FCG 在惰性环境中对 R 不敏感。尽管如此,基于 D K eff 思想的带材屈服模型 (SYM) 比基于任何其他原理的替代模型更常用于 FCG 寿命预测。为了验证 SYM 是否确实本质上更好,它们的力学原理用于预测 FCG 速率,这既基于 Elber 的想法,也基于另一种观点,即 FCG 是由于裂纹尖端前方的损伤积累造成的,这不需要 D K eff 假设或任意数据拟合参数。尽管基于相互冲突的原理,但这两种模型都可以很好地再现准恒定 D K 载荷下获得的 FCG 数据,这是一个有点令人惊讶的结果,值得仔细分析。� 2017 Elsevier Ltd. 保留所有权利。
摘要:为了尽量减少机载激光扫描 (ALS) 条带重叠区域内的差异,可以进行条带平差。除了转换模型之外,条带平差的质量还受到此过程中使用的观测值的强烈影响。为了充分利用数据的全部分辨率,应基于原始点云而不是插值表面或栅格建立对应关系,这样可以避免精度损失和系统插值效应。基于原始点云建立对应关系的表面匹配方法是迭代最近点 (ICP) 算法。在本研究中,研究了几种适用于大量数据的 ICP 变体。我们介绍了一种基于点对平差计算的影响来选择对应关系的新方法。作为这项研究的结果,提出了一种变体组合,形成了针对大多数 ALS 数据优化的基线。所研究的变体为 ALS 条带调整提供了对应框架。特定变体的优势在具有挑战性的 ALS 场景的基础上得到展示。
摘要:为了尽量减少机载激光扫描 (ALS) 条带重叠区域内的差异,可以进行条带平差。除了转换模型之外,条带平差的质量还受到此过程中使用的观测值的强烈影响。为了充分利用数据的全部分辨率,应基于原始点云而不是插值表面或栅格建立对应关系,这样可以避免精度损失和系统插值效应。基于原始点云建立对应关系的表面匹配方法是迭代最近点 (ICP) 算法。在本研究中,研究了几种适用于大量数据的 ICP 变体。我们介绍了一种基于点对平差计算的影响来选择对应关系的新方法。作为这项研究的结果,提出了一种变体组合,形成了针对大多数 ALS 数据优化的基线。所研究的变体为 ALS 条带调整提供了对应框架。特定变体的优势在具有挑战性的 ALS 场景的基础上得到展示。
摘要:为了尽量减少机载激光扫描 (ALS) 条带重叠区域内的差异,可以进行条带平差。除了转换模型之外,条带平差的质量还受到此过程中使用的观测值的强烈影响。为了充分利用数据的全部分辨率,应基于原始点云而不是插值表面或栅格建立对应关系,这样可以避免精度损失和系统插值效应。基于原始点云建立对应关系的表面匹配方法是迭代最近点 (ICP) 算法。在本研究中,研究了几种适用于大量数据的 ICP 变体。我们介绍了一种基于点对平差计算的影响来选择对应关系的新方法。作为这项研究的结果,提出了一种变体组合,形成了针对大多数 ALS 数据优化的基线。所研究的变体为 ALS 条带调整提供了对应框架。特定变体的优势在具有挑战性的 ALS 场景的基础上得到展示。
摘要:为了尽量减少机载激光扫描 (ALS) 条带重叠区域内的差异,可以进行条带平差。除了转换模型之外,条带平差的质量还受到此过程中使用的观测值的强烈影响。为了充分利用数据的全部分辨率,应基于原始点云而不是插值表面或栅格建立对应关系,这样可以避免精度损失和系统插值效应。基于原始点云建立对应关系的表面匹配方法是迭代最近点 (ICP) 算法。在本研究中,研究了几种适用于大量数据的 ICP 变体。我们介绍了一种基于点对平差计算的影响来选择对应关系的新方法。作为这项研究的结果,提出了一种变体组合,形成了针对大多数 ALS 数据优化的基线。所研究的变体为 ALS 条带调整提供了对应框架。特定变体的优势在具有挑战性的 ALS 场景的基础上得到展示。
摘要:为了尽量减少机载激光扫描(ALS)条带重叠区域的差异,可以进行条带调整。除了转换模型之外,条带调整的质量还受到此过程中使用的观测值的强烈影响。为了充分利用数据的全部分辨率,应在原始点云而不是插值表面或栅格的基础上建立对应关系,以避免精度损失和系统插值效应。基于原始点云的对应关系的表面匹配方法是迭代最近点(ICP)算法。在本研究中,研究了几种适用于大量数据的 ICP 变体。我们引入了一种新的对应选择方法,该方法基于点对调整计算的影响。作为这项研究的结果,提出了一种变体组合,形成了针对大多数 ALS 数据优化的基线。所研究的变体为 ALS 条带调整提供了对应框架。在具有挑战性的 ALS 场景的基础上展示了特定变体的好处。
机载激光扫描 (ALS) 是一种在扩展区域内获取密集且精确点云的有效方法。为确保无间隙覆盖该区域,点云以条带形式收集,重叠程度相当大。这些重叠区域中包含的冗余信息可与地面实况数据一起使用,以重新校准 ALS 系统并补偿系统测量误差。此过程通常称为条带调整,可改善 ALS 条带的地理参考,换句话说,可提高获取的点云的数据质量。我们提出了一种全自动条带调整方法,该方法 (a) 使用原始扫描仪和轨迹测量,(b) 对整个 ALS 多传感器系统进行在职校准,以及 (c) 单独校正每个条带的轨迹误差。与迭代最近点 (ICP) 算法类似,在重叠的 ALS 条带的点之间迭代直接建立对应关系(避免耗时的点云分割和/或插值)。基于由 103 条条带组成的 ALS 块证明了该方法对大量数据的适用性。