ATLLAS 高速飞行轻型先进材料的气动和热载荷相互作用 ATLLAS II 轻型先进结构上的气动热力学载荷 II BLOX4 第四激光氧化分析设备 C/C-SiC 碳纤维增强碳化硅复合材料 CMC 陶瓷基复合材料 CTE 热膨胀系数(以 10 -6 °C -1 为单位) CVI 化学气相渗透 DGA 军备总局 DLR 德国空气和空间飞行中心 EDM 电火花加工 EDS 能量色散光谱 ESA-ESTEC 欧洲空间局 - 欧洲空间研究与技术中心 FAST 场辅助烧结技术 HP 热压 PCS 聚碳硅烷(SiC 前体) PIP 前体渗透和热解 PyC 热解碳 RMI 反应熔融渗透 SEM 扫描电子显微镜 SI 浆料渗透 SIP 浆料渗透和热解 SPS 放电等离子烧结 TT 热处理 UHTC 超高温陶瓷 UHTCMC 超高温陶瓷基复合材料 WC 碳化钨 ρ 密度(单位:g/cm 3 ) σ f 弯曲强度(单位:MPa) ε f 弯曲应变(单位:%) d 50 中值粒度(单位:µm) E 杨氏模量(单位:GPa) E f 弯曲模量(单位:GPa) K 1C 断裂韧性(单位:MPa.m 1/2 ) H v 硬度(单位:GPa)
摘要 电极设计创新产生了大量新颖且富有创意的策略,用于将神经系统与更柔软、侵入性更小、分布更广且具有高空间分辨率的部位连接起来。然而,尽管植入电极阵列在研究和临床应用中的使用迅速增长,但对于中枢神经系统 (CNS) 中生物相容性慢性记录接口的设计,尚无广泛接受的指导原则。研究表明,设备的结构和灵活性在确定有效的组织整合方面起着重要作用:设备特征尺寸(从“亚”细胞尺度到“超”细胞尺度,< 10 µ m 到 > 100 µ m)、杨氏模量和弯曲模量都已被确定为设计的关键特征。然而,对于这些设计的根本动机,该领域仍然存在关键的知识空白:(1)需要系统地研究设备设计特点(材料、结构、灵活性)、生物整合和信号质量之间的关系,包括控制设计特点之间的相互作用,(2)需要确定成功的基准(生物整合、记录性能、寿命、稳定性),以及(3)用户结果,特别是那些支持特定设计或电极修改的结果,需要在实验室之间复制。最后,需要考虑诸如系绳、部位阻抗和插入方法等因素的附带影响。在这里,我们简要回顾了迄今为止对设备设计对组织整合和性能的影响的观察结果,然后强调了今后需要全面而系统地测试这些影响。
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
^^^ Tanabe, Y., 121-139 致密型 (CT), 7,48,65, 104, j - ^ ^ ^ ^ ^ ^ ^ ^u g, 16, 103, 211 122, 149, 175, 193, 215, 275 ^^^j^^^ ^ L., 5-30 锁孔, 296 j ^ ^ ^ ^ j j ^ ^ j ^ ^ ^^^_^J2 光谱载荷, 246,257,261,297 j^ansgranular, 8,20, 51, 70,91, 107, 稳定性, 19 155^ 30^ 堆垛层错能, 38 转变点, 8, 98 钢透射电子显微镜奥氏体,122(TEM)34 97奥氏体不锈钢,6,16,32,175,y^联合设计,'164'^^孪生,20,56,76铸碳和低合金,142,294铁-镍,6铁-硅,64,106 4340,193Vacas-Oleas,C,140-160,293-312高锰,32,48,121真空,85,182马氏体时效,19真空熔炼,32,48,65温和,43,275Verkin,B.I.,84-101Stephens,R.I.,1-2,140-160, 293- 空洞,158 312,315-320 应变幅,32,35,143 W 应力强度因子 ^ang,C.M.,293-312 闭合(^ci)或打开(/Top),67,^^^^ 预应力,194 ^^' '^^' 2^^^ 焊缝/焊接件,8,122,175,275 有效(A^eff),67,71,181,196,^jj^gj,^ ^ 210-237 283 固有有效(AKett),114 X 阈值(AKth),65,71,87,106,152,174,178,194 ^"'"^y衍射,87 应力集中因子(^t),253,y 296 应力释放,275 屈服强度,34,69,96,142,175 拉伸区,135 Yokobori,T.,121-139 条纹,8,51,87,91,107,155,杨氏模量,7,18,77,97,133,199,287,304 184,220,278 亚晶粒,97 钇,212 取代原子,42 Yu,W.,63-83
^^^ Tanabe, Y., 121-139 致密型 (CT), 7,48,65, 104, j - ^ ^ ^ ^ ^ ^ ^ ^u g, 16, 103, 211 122, 149, 175, 193, 215, 275 ^^^j^^^ ^ L., 5-30 锁孔, 296 j ^ ^ ^ ^ j j ^ ^ j ^ ^ ^^^_^J2 光谱载荷, 246,257,261,297 j^ansgranular, 8,20, 51, 70,91, 107, 稳定性, 19 155^ 30^ 堆垛层错能, 38 转变点, 8, 98 钢透射电子显微镜奥氏体,122(TEM)34 97奥氏体不锈钢,6,16,32,175,y^联合设计,'164'^^孪生,20,56,76铸碳和低合金,142,294铁-镍,6铁-硅,64,106 4340,193Vacas-Oleas,C,140-160,293-312高锰,32,48,121真空,85,182马氏体时效,19真空熔炼,32,48,65温和,43,275Verkin,B.I.,84-101Stephens,R.I.,1-2,140-160, 293- 空洞,158 312,315-320 应变幅,32,35,143 W 应力强度因子 ^ang,C.M.,293-312 闭合(^ci)或打开(/Top),67,^^^^ 预应力,194 ^^' '^^' 2^^^ 焊缝/焊接件,8,122,175,275 有效(A^eff),67,71,181,196,^jj^gj,^ ^ 210-237 283 固有有效(AKett),114 X 阈值(AKth),65,71,87,106,152,174,178,194 ^"'"^y衍射,87 应力集中因子(^t),253,y 296 应力释放,275 屈服强度,34,69,96,142,175 拉伸区,135 Yokobori,T.,121-139 条纹,8,51,87,91,107,155,杨氏模量,7,18,77,97,133,199,287,304 184,220,278 亚晶粒,97 钇,212 取代原子,42 Yu,W.,63-83
纳米复合涂层的硬度增强及其兴起的原因。简要概述了硬质纳米复合涂层领域的知识现状 [1]。第二部分致力于纳米复合涂层的热稳定性、纳米复合涂层的热循环以及使用溅射形成具有热稳定性和 1000 C 以上抗氧化性的非晶态涂层。作为例子,报道了 (i) nc-t-ZrO 2 /a-SiO 2 纳米复合涂层在高达 1400 C 的空气中耐热循环 [2] 和 (ii) a-(Si 3 N 4 /MeN x ) 和 a-(Si-B-C-N) 非晶态涂层在 1000 C 以上的空气中热稳定且抗氧化 [3]。第三部分报告了具有增强韧性的新型先进硬质纳米复合涂层,特别是 (i) 由分散在非晶基体 (AM) 中的纳米颗粒 (NG) 组成的 NG/AM 复合涂层和 (ii) 抗开裂的高弹性复合涂层。例如,(i) 具有低摩擦和磨损的 nc-TiC/a-C 纳米复合涂层和 (ii) Zr-Al-O [4]、Al-Cu-O 氧化物复合涂层 [5] 和 Al-O-N 氮化物/氧化物纳米复合涂层 [6],其硬度 H 18 GPa,低杨氏模量 E 满足条件 H/E 0.1,高弹性回复 We 70% 和大大增强的抗开裂性,这些涂层被详细报告。结果表明,具有增强韧性的硬涂层代表了一类具有巨大应用潜力的新型先进防护和功能涂层。最后,概述了先进硬纳米复合涂层的下一步发展趋势。参考文献
纳米复合涂层的硬度增强及其兴起的原因。简要概述了硬质纳米复合涂层领域的知识现状 [1]。第二部分致力于纳米复合涂层的热稳定性、纳米复合涂层的热循环以及使用溅射形成具有热稳定性和 1000 C 以上抗氧化性的非晶态涂层。作为例子,报道了 (i) nc-t-ZrO 2 /a-SiO 2 纳米复合涂层在高达 1400 C 的空气中耐热循环 [2] 和 (ii) a-(Si 3 N 4 /MeN x ) 和 a-(Si-B-C-N) 非晶态涂层在 1000 C 以上的空气中热稳定且抗氧化 [3]。第三部分报告了具有增强韧性的新型先进硬质纳米复合涂层,特别是 (i) 由分散在非晶基体 (AM) 中的纳米颗粒 (NG) 组成的 NG/AM 复合涂层和 (ii) 抗开裂的高弹性复合涂层。例如,(i) 具有低摩擦和磨损的 nc-TiC/a-C 纳米复合涂层和 (ii) Zr-Al-O [4]、Al-Cu-O 氧化物复合涂层 [5] 和 Al-O-N 氮化物/氧化物纳米复合涂层 [6],其硬度 H 18 GPa,低杨氏模量 E 满足条件 H/E 0.1,高弹性回复 We 70% 和大大增强的抗开裂性,这些涂层被详细报告。结果表明,具有增强韧性的硬涂层代表了一类具有巨大应用潜力的新型先进防护和功能涂层。最后,概述了先进硬纳米复合涂层的下一步发展趋势。参考文献
研究项目描述:胶原蛋白 VI 相关先天性肌营养不良症 (COL6-RD) 是一组罕见的先天性神经肌肉疾病,目前尚无有效治疗方法。它们是由三种主要 COL6 基因之一的突变引起的,导致结合到结缔组织 ECM 中的 COL6 出现缺陷或功能障碍,影响整个纤维网络的组装和结构完整性。COL6-RD 的临床特征继发于 ECM 破坏,包括肌肉无力、近端关节挛缩和远端过度松弛。虽然已在患者的 ECM 中发现了一些特征,但尚未确定它们与临床表型之间的直接相关性,这主要是由于缺乏病理预测模型。最近,IBEC 的纳米生物工程小组与 SJD 的神经肌肉疾病应用研究小组合作,基于 COL6-RD 患者细胞的细胞衍生基质 (CDM) 开发了该疾病的个性化临床前模型,这些细胞衍生基质显示出患者表型的独特特征。最近,我们与 IBEC 的纳米探针和纳米开关小组合作,使用原子力显微镜-力谱 (AFM-FS) 对患者的 CDM 进行了纳米力学分析,这使我们能够确定杨氏模量的健康范围,从中排除和区分疾病的表型。对基因编辑细胞进行的概念验证分析表明,编辑后 CDM 的机械性能得到恢复。基于这些有希望的结果,当前项目旨在通过 AFM-FS 和生物分子表征来评估 SJD 开发的最新基因疗法,这些疗法基于患者 CDM 中的核酸,例如 CRISPR/Cas9、碱基编辑器或反义寡核苷酸。
基于蛋白质的微纤维在生物工程和食品领域具有潜在的应用,但在微米级上保留和利用其蛋白质构件的独特纳米机械性能仍然是一项挑战。本研究通过同轴微流体纺丝果胶和 β-乳球蛋白在不同构象状态(单体、淀粉样蛋白原纤维、缩短的淀粉样蛋白原纤维,处于各向同性/向列相)下自下而上制造核壳纤维,在 CaCl 2 溶液中凝胶化。纤维直径范围为 478 至 855 μ m(湿态)和 107 – 135 μ m(干态)。它们显示出清晰的核壳横截面,但果胶-β-乳球蛋白单体纤维除外,据推测紧凑的蛋白质会扩散到果胶基质中。纤维构建块的分子取向表示为有序参数,代表果胶链和淀粉样蛋白原纤维平行于纤维轴的排列,该参数通过空间分辨率为 20 μ m 的同步加速器广角 X 射线散射 (WAXS) 计算得出。与纯果胶纤维相比,引入淀粉样蛋白原纤维作为蛋白质核心可使杨氏模量从 3.3 增加到 6.4 GPa,拉伸强度从 117 增加到 182 MPa。然而,将蛋白质核心流速从 1 mL/h 增加到 2 mL/h 会导致核心喷射螺旋弯曲、有序性降低,最终导致机械性能恶化。总体而言,与缩短的淀粉样蛋白原纤维相比,全长淀粉样蛋白原纤维对机械性能更有益。通过深入了解蛋白质构象、纺丝流速和由此产生的核壳微纤维的机械性能之间的关系,这些结果可能有助于新型纤维蛋白质材料领域。
胶接接头 开裂搭接剪切试样的应力分析:ASTM 循环试验 (Johnson), 11 月, 303 空气阻隔系统 评估空气阻隔系统的拟议测试程序 (Timusk and Seskus), 7 月, 191 气密性 评估空气阻隔系统的拟议测试程序 (Timusk and Seskus), 7 月, 191 合金 用于金属分选的热电差异 (Stuart), 7 月, 224 铝合金 多晶 B2 Ni-Al 中杨氏模量的温度和成分依赖性 (Harmouche and Wolfenden), 3 月, 101 铝合金 一种确定铝合金拉伸性能和各向异性的方法 (Srivatsan, Meyers, and Berry), 7 月, 196 铝合金的 J 积分测试:一种标记裂纹前沿的新技术 (Beaver), 11 月, 350肺泡巨噬细胞 焚烧炉飞灰对肺泡巨噬细胞的细胞毒性 (Liu, Wong, and Tam), 1 月, 3 模拟数字转换器 使用微型计算机和 A/D 转换器对 NBS 烟室进行计算机化 (Eichhorn, Barrow, and Davis), 9 月, 281 沥青耐久性 沥青老化硬化分析的建议方法 (Ishai), 5 月, 127 ASTM E 119 ASTM E 119 和 ISO 834 耐火试验中暴露严重程度的比较 (Harmathy, Sultan, and Mac-Laurin), 11 月, 371 ASTM E 662 使用微型计算机和 A/D 转换器对 NBS 烟室进行计算机化 (Eichhorn, Barrow, and Davis), 9 月, 281 ASTM 标准 E 9 ASTM 标准 E 9 压缩试样的非弹性屈曲(Papirno),133 年 5 月 弯曲试验 一种通过分析载荷位置和由行进载荷弯曲的梁的位移之间的关系来测量材料弹性模量的新方法 (Kuroda),10S 年 3 月 书评 无损检测的电磁方法由 Lord (Starin) 编辑,299 年 9 月