印度的苍蝇研究界在过去 20 年中得到了极大的发展,他们对这个想法反应热烈,并作为第一步,贡献了可用于生命科学相关课程各个层次的实验练习方案。本合集中包含的实验练习确实反映了苍蝇模型的多样性。每一章都以实验手册的形式编写,提供给定练习目标的背景、所需材料清单、实验程序的分步描述以及关于要观察内容的提示。接下来是几个引导性问题,让学生扩展对给定主题的理解。每种情况都提供了已发表论文和网页的参考文献小列表。还提供了指向书中其他相关章节的适当交叉引用链接。(红色链接)。
FFED程序是一个具有丰富历史的复杂程序。在国际上,在2022财年,阿菲斯(Aphis)通过其合作者Moscamed,平均每周产生10亿无菌的地中海水果果蝇(MEDFLIES),以减轻从墨西哥和危地马拉的北向运动,并在加利福尼亚和Florida的高风险地区释放。阿菲斯(Aphis)继续为墨西哥的合作者提供帮助,通过为墨西哥恰帕斯(Chiapas)释放的额外生产提供了额外的生产。在国内,Aphis及其合作者每周在加利福尼亚释放1.2亿次无菌药物,在2022财年在佛罗里达州每周释放8000万个无菌药物。要在德克萨斯州与墨西哥果蝇(Mexfly)入侵,危地马拉和德克萨斯州的Aphis饲养设施的入侵产生了90亿无菌的Mexflies,以在德克萨斯州和墨西哥释放。在纽约州,阿菲斯(Aphis)与樱桃生产商合作,简化了监管措施,允许樱桃从欧洲樱桃果蝇隔离区移出。
机会性真菌感染的全球影响很长一段时间(1)。然而,随着慢性和免疫抑制健康状况的增加,包括艾滋病毒/艾滋病,癌症,囊性纤维化和糖尿病,抗菌治疗和侵入性程序,使个人容易受到机会性感染的影响,这些感染的影响变得更加明显(1,2)。真菌通过直接感染宿主或通过其继发代谢产物,霉菌毒素,可能污染环境,食品和空气的颜料引起疾病(3)。这种疾病负担从超级到侵入性真菌感染范围,估计每年为100亿患者,每年死亡> 150万人死亡(2,4)。这些感染是由长期识别的病原体(如曲霉和白色念珠菌)(5-7)引起的,如Eumyycetoma(8、9)等被忽视的热带疾病以及新出现的病原体,例如念珠菌(10,11)。随着晚期分子和细胞生物学技术的发展,正在更详细地研究真菌致病性和毒力因子(12-14)。然而,随着新颖有效的抗真菌疗法的发展仍然不足,真菌威胁继续增长(15、16)。在2022年,世卫组织发布了WHO
从果蝇中的基因组DNA制备该方案可以从40-100 mg的成年蝇(蝇重约1 mg)中分离出高度纯的基因组DNA。首先,在核保持完整的条件下,蝇是在缓冲液中磨碎的,然后使用SDS将DNA从断裂的组织中释放出来。接下来,进行常规的苯酚提取(去除蛋白质)和氯仿提取(去除苯酚),并用乙醇沉淀核酸。离心后(去除脂质和小细胞分子),将核酸沉淀溶解并用rnasea(降解RNA)和蛋白酶K(降解rNASEA和其他蛋白质)串行消化。其他苯酚/氯仿沉淀和乙醇沉淀产生高度纯化的基因组DNA。我们的目标是完整的基因组DNA - 避免通过过度的移液和涡旋剪切DNA。1。将50个成年果蝇放入装有微型植物的1.5 mL微管中,并在500 µl的缓冲液中彻底磨碎A。用500 µl的缓冲液B冲洗杵,将冲洗液加入匀浆中;通过反转微管轻轻混合。在37°C下孵育1小时2。切断P1000微量移动尖端的尖端,然后使用它将匀浆(500 µL)的一半转移到第二个微管中。苯酚通过在每个管,帽和混合物中添加相等的体积(500 µL)Te饱和苯酚来提取样品。离心5分钟。3。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。离心5分钟。4。5。通过在每个管,帽和混合物中添加等体积(500 µl)苯酚的苯酚来重新提取样品。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。氯仿通过在每个管,帽和混合物中添加等体积(500 µl)的氯仿提取样品。离心1分钟。使用截止尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。将NaCl添加到0.1m的最终浓度。乙醇通过在每个微管中添加2卷(〜850 µl)的EtOH来沉淀您的样品;轻轻混合。观察核酸的沉淀。将微管放在-20°C过夜以鼓励沉淀。6。离心10分钟。丢弃上清液;短暂地干燥SpeedVac中的颗粒(将显示使用)。7。如下,将样品组合到单个微管中。然后,使用截止P200尖端将500 µl TE缓冲液加到一个管中
真核生物染色体中的遗传信息包含在一个双链 DNA 分子中,这一令人欣喜的概念得到了最近对果蝇 (1) 和酵母 (2, 3) 的实验的支持。鉴于这种分子连续性,复制染色体中遗传顺序的问题就简化为复制单个长 DNA 分子的问题,对于果蝇 (Drosophila melanogaster) 来说,该 DNA 分子的最大长度约为 2.1 厘米,即 62,000 kb [参考文献 1;kb(千碱基)是长度单位,等于单链或双链核酸中的 1000 个碱基或碱基对]。我们通过电子显微镜检查快速分裂的裂解核中的 DNA,研究了果蝇中的这种复制问题。在 240 ℃ 时,裂解核每 9.6 分钟分裂一次,中间期只有 3.4 分钟 (4),在此期间每个染色体 DNA 分子都必须复制。因此,最大染色体中 DNA 的分子复制速率应等于或大于 18,000 kb/min(分子)。由于动物染色体中 DNA 复制叉的移动速率上限估计约为 3 kb/min(复制叉)(5、6),我们预计这种快速的分子复制将需要每个分子 6000 个或更多复制叉的协同作用,或每 10 kb DNA 至少需要一个复制叉。正是这种预期让我们看到了通过电子显微镜观察确定真核染色体 DNA 中复制叉的结构和分布的希望。在本文中,我们表明这种希望已经实现。果蝇卵裂核的 DNA 呈连续排列
图 2. 网络扰动的影响。A. 半脑中的每个突触都有一个置信度分数,表明自动识别它们的机器学习算法的置信度。我们通过排除置信度分数低于某个阈值的突触来扰动网络。扰动网络中每条边的权重都是其原始权重的一小部分;这里显示的是这些权重比的分布。这种扰动导致整体边缘变弱,更高的阈值也会切断更多边缘(在 0.0 的箱中计数)。B. 扰动网络中发现的社区数量与原始网络中的数量相比。灰线表示相等。在更高的分辨率尺度下,随着扰动图变得弱连接,相对于原始网络发现了更多的簇。
果蝇被广泛用作所有生物医学研究领域的模型生物。在神经科学领域,人们利用这种小果蝇获得了大量信息,包括识别调节行为的神经回路、揭示其遗传基础以及所涉及的分子机制。尽管有大量遗传工具可用于操纵和推断神经元活动,但对果蝇神经元电特性的直接测量却落后了。这是因为在果蝇中枢神经元等小细胞中进行电记录非常复杂。膜片钳技术提供了直接测量果蝇神经元电特性的独特可能性。此分步方案提供了掌握此技术的详细建议。
可兴奋细胞(如神经元和肌肉细胞)的膜电位经历了由一系列配体和电压门控离子通道介导的丰富动态变化。尤其是中枢神经元,它们是信息、感知和整合由突触输入介导的多个亚阈值电流并将其转化为动作电位模式的出色计算机。电生理学包括一组允许直接测量电信号的技术。有许多不同的电生理学方法,但由于果蝇神经元很小,全细胞膜片钳技术是记录来自单个中枢神经元的电信号的唯一适用方法。在这里,我们提供了果蝇膜片钳电生理学的背景知识,并介绍了解剖幼虫和成年大脑的方案,以及实现已识别神经元类型的全细胞膜片钳记录的方案。膜片钳是一种劳动密集型技术,需要大量练习才能成为专家;因此,应该预计学习曲线会很陡峭。然而,我们希望分享和传播神经元放电的即时满足感,因为需要更多的果蝇膜片钳来研究迄今为止未知的许多果蝇神经元类型的电特征。
本出版物可能对您有所帮助,但维多利亚州及其员工不保证本出版物没有任何缺陷或完全适合您的特定目的,因此对于您依赖本出版物中的任何信息而产生的任何错误、损失或其他后果,维多利亚州及其员工不承担任何责任。尽管我们已尽一切努力确保内容的时效性、准确性或完整性,但我们仍努力保持内容的相关性和时效性,并保留根据需要进行更改的权利。维多利亚州政府、作者和演讲者不对任何人就报告中提供或提及的信息(或信息的使用)承担任何责任。
图2:果蝇睾丸中的干细胞生态位。褐色:轮毂细胞HC。蓝色:种系干细胞GSC。绿色:囊肿干细胞CYSC。红色:区分生殖细胞。棕色:囊肿。利基位于睾丸管的远端。种系干细胞和囊肿干细胞已连接并增殖,并由几个组成“轮毂”的细胞锚定。区分时,一组一组分化的种系细胞与两个囊肿细胞形成复合物。囊肿充当区分生殖细胞的容器,该容器经历了细胞分裂,构成了囊肿中包含的精子祖细胞的包装。这种发展由持续细胞分裂的箭头指示(续)。