CRISPR/Cas9 编辑的效率和结果取决于切割位点的染色质状态。研究表明,改变染色质状态可以影响效率和修复结果,并且表观遗传药物已被用于改善 Cas9 编辑。然而,由于这些药物的靶蛋白在基因组中分布不均匀,因此这些药物的疗效可能因位点而异。在这里,我们系统地分析了 160 种表观遗传药物的染色质背景依赖性。我们使用具有 19 个稳定整合报告基因的人类细胞系在不同的染色质环境中诱导双链断裂 (DSB)。然后,我们通过对突变特征进行测序来测量 Cas9 编辑效率和修复途径使用情况。我们确定了 67 种药物
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
可及染色质区域 (ACR) 与基因组中的基因表达紧密相关。保守的非编码顺式调控元件,如转录因子结合基序,通常存在于 ACR 中,表明 ACR 在植物基因组结构中起着重要的调控作用。然而,关于大豆 ACR 的研究很少,尤其是针对特定组织的研究。因此,在本研究中,我们利用便捷的 ATAC-seq,鉴定了六种大豆组织中的 ACR,包括根、叶芽、花、花芽、发育中的种子和豆荚。总的来说,ACR 约占整个大豆基因组的 3.3%。通过整合 RNA 测序和转录因子 (TF) ChIP-seq 的结果,发现 ACR 与大豆中的基因表达和 TF 结合能力紧密相关。总之,这些数据提供了对大豆 ACR 基因组特征的全面了解。作为重要基因组资源的集合,这些处理后的数据可在 datahub.wildsoydb.org 上获取。
。CC-BY-NC-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是 由 此预印本的版权持有者(此版本于 2020 年 5 月 5 日发布。 ; https://doi.org/10.1101/2020.05.05.078436 doi: bioRxiv preprint
摘要:在转录,DNA复制和修复过程中,染色质结构经常进行调节以揭示特定的遗传区域并允许进入DNA相互作用的酶。ATP依赖性染色质重塑络合物使用ATP水解的能量通过重新定位和重新排列核小体来修饰染色质结构。这些复合物由保守的SNF2(催化ATPase亚基)定义,并分为四个家庭:CHD,SWI/SNF,ISWI和INO80。ATP依赖性染色质重塑者对于调节包括内耳在内的许多器官的发育和干细胞生物学至关重要。此外,编码为染色质重塑者一部分的蛋白质的基因突变已与许多神经感觉聋的情况有关。在这篇综述中,我们描述了这些复合物的组成,结构和功能活性,并讨论它们如何促进听力和神经感觉的耳聋。
摘要 CRISPR 相关 (Cas) 酶通过实现 RNA 引导的基因组编辑彻底改变了生物学。在供体模板存在下进行同源定向修复 (HDR) 目前是 CRISPR-Cas 诱导的双链 DNA 切割后引入精确编辑的最通用方法,但 HDR 效率通常低于导致插入和缺失 (indel) 的末端连接途径。我们测试了使用与 PRDM9 融合的 Cas9 构建体可以增加 HDR 的假设,PRDM9 是一种染色质重塑因子,可沉积组蛋白甲基化 H3K4me3 和 H3K36me3,经证实可介导人类细胞中的同源重组。我们的结果表明,融合蛋白特异性地在 DNA 中的 Cas9 切割位点接触染色质,使观察到的 HDR 效率加倍,并将 HDR:indel 比率提高 3 倍,与单独使用 Cas9 诱导的相比。HDR 增强发生在多种细胞系中,脱靶基因组编辑没有增加。这些发现强调了染色质结构对于 CRISPR-Cas 基因组编辑过程中 DNA 修复途径选择的重要性,并提供了一种提高 HDR 效率的新策略。意义声明 CRISPR-Cas 介导的同源定向修复 (HDR) 可为各种研究和临床应用提供精确的基因组编辑,但由于竞争性端接途径,HDR 效率通常较低。在这里,我们描述了一种通过设计 CRISPR-Cas9-甲基转移酶融合蛋白来影响 DNA 修复途径选择并提高 HDR 效率的简单策略。该策略强调了组蛋白修饰对 CRISPR-Cas 诱导的双链断裂后 DNA 修复的影响,并增加了 CRISPR 基因组编辑工具箱。
Ruben Schep, 1 , 2 Eva K. Brinkman, 1 , 2 , 7 Christ Leemans, 1 , 2 Xabier Vergara, 1 , 2 , 3 Robin H. van der Weide, 1 , 2 Ben Morris, 4 , 5 Tom van Schaik, 1 , 2 Stefano G. Manzo, 1 , 2 Daniel Peric-Hupkes, 1 , 2 Jeroen van den Berg, 1 , 3 Roderick L. Beijersbergen, 4 , 5 Rene´ H. Medema, 1 , 3 和 Bas van Steensel 1 , 2 , 6 , 8 , * 1 Oncode 研究所, 荷兰癌症研究所, 1066 CX, 阿姆斯特丹, 荷兰 2 基因调控部, 荷兰癌症研究所, 1066 CX, 阿姆斯特丹, 荷兰3 荷兰癌症研究所细胞生物学部, 1066 CX,阿姆斯特丹,荷兰 4 荷兰癌症研究所分子致癌作用部,1066 CX,阿姆斯特丹,荷兰 5 荷兰癌症研究所机器人筛查中心,1066 CX,阿姆斯特丹,荷兰 6 伊拉斯姆斯大学医学中心细胞生物学系,3015 CN,鹿特丹,荷兰 7 现地址:SciLifeLab,卡罗琳斯卡医学院微生物学、肿瘤和细胞生物学系,Box 1031,171 21 Solna,斯德哥尔摩,瑞典 8 主要联系人*通信地址:bvsteensel@nki.nl https://doi.org/10.1016/j.molcel.2021.03.032
虽然几种基因编辑蛋白可以有效地切割原代人类细胞中的各种靶标,但这些数据表明,新型 NoveSlice 基因编辑内切酶对靶标染色质环境的敏感性比等效 TALEN 对更高。潜在有害的脱靶效应风险限制了基因编辑技术的临床转化。在基因组不可接近区域中活性降低的基因编辑内切酶可以表现出更少的脱靶效应,因此可以成为开发基因编辑疗法的有力工具。我们在此介绍了一种新型基因编辑内切酶,它对靶标染色质环境表现出更高的敏感性。NoveSlice 可以作为开发新型精准药物(包括体内基因编辑疗法)的重要工具。
多重遗传扰动对于测试编码或非编码遗传元件之间的功能相互作用至关重要。与 DNA 切割相比,使用 CRISPR 干扰 (CRISPRi) 抑制染色质形成可避免基因毒性,并且在混合检测中更有效地扰乱非编码调控元件。然而,目前的 CRISPRi 混合筛选方法通常仅限于每个细胞靶向 1-3 个基因组位点。为了开发一种在功能基因组学筛选中使用 CRISPRi 对基因组位点进行高阶 (> 3) 组合靶向的工具,我们设计了一种 Acidaminococcus Cas12a 变体——称为多重转录干扰 AsCas12a (multiAsCas12a)。 multiAsCas12a 在使用慢病毒转导传递的 CRISPR RNA(crRNA)高阶多路复用阵列进行组合 CRISPRi 靶向时,其表现明显优于最先进的 Cas12a 变体,
图 2. DNMT3A 编辑细胞中的基因表达动态表明了一种不同于二进制的记忆形式。A 使用与 dCas9、PhlF 或 rTetR 融合的 KRAB、DNMT3A 或 TET1 作为 DNA 结合域 (DBD) 进行瞬时表观遗传编辑的概述。B 本研究开发的实验系统示意图。报告基因通过位点特异性染色体整合整合到内源性哺乳动物基因座中。哺乳动物组成型启动子 (EF1a) 驱动荧光蛋白 EBFP2 的表达。上游结合位点能够靶向募集表观遗传效应物,这些效应物与 DNA 结合蛋白 rTetR、PhlF 或 dCas9 融合。报告基因两侧是染色质绝缘体,以与其他基因隔离。 C 实验概述描述了瞬时转染到带有报告基因的细胞、基于转染水平的荧光激活细胞分选和时间过程流式细胞术测量。D 根据图 C 中显示的实验时间线,DNMT3A 编辑(DNMT3A-dCas9)报告基因的基因表达动态。显示的是 DNMT3A 编辑细胞的单细胞流式细胞术测量(EBFP2)。DNMT3A-dCas9 靶向启动子上游的 5 个靶位点,并使用乱序 gRNA 靶序列作为对照(图 SE.2 A、B、表 S3)。黄色阴影表示检测到转染标记的时间。显示的数据来自 3 个独立重复的代表性重复。E 转染 DNMT3A-dCas9 和细胞分选后 14 天进行 MeDIP-qPCR 和 ChIP-qPCR 分析,以获得高水平的转染。分析了启动子区域(表 S4 和方法)。显示的数据来自三个独立的重复。报告的是使用标准 ∆∆ C t 方法相对于活性状态的倍数变化及其平均值。误差线是平均值的标准差。DNMT3A-dCas9 靶向启动子 (gRNA) 上游的 5 个靶位点。使用乱序的 gRNA 靶序列 (gRNA NT) 作为对照。* P <0.05,** P <0.01,*** P <0.001,非配对双尾 t 检验。F 根据图 C 中显示的实验时间线的 KRAB 编辑 (PhlF-KRAB) 基因表达动态。显示的是单个细胞的报告基因 (EBFP2) 的流式细胞术测量值。黄色阴影区域表示在未应用 DAPG 期间检测到转染标记的时间。从第 6 天开始,在 PhlF-KRAB 和 PhlF 条件下应用 DAPG。每天测量不同的独立重复。显示的数据来自 3 个独立重复。G 转染 PhlF-KRAB 和高水平转染细胞分选后 6 天的 MeDIP-qPCR 和 ChIP-qPCR 分析。分析的是启动子区域。数据来自三个独立重复。显示的是相对于活性状态的标准 ∆∆ C t 方法确定的倍数变化及其平均值。误差线是平均值的标准差。* P <0.05,** P <0.01,*** P <0.001,非配对双尾 t 检验。H 当 KRAB = 0、TET1 = 0 时获得的染色质修饰回路。参见 SI 图 SM.1 C。I 上图:(CpGme, X) 对的剂量反应曲线。下图:DNMT3A 脉冲强度与 DNA 甲基化等级 (CpGme) 之间的剂量反应曲线。脉冲强度通过增加其高度来增加。参见 SI 图 SM.1 D 和 SM.3。J 系统基因表达的平稳概率分布,由 SI 表 SM.1 和 SM.4 中列出的反应表示,参数值在 SI 第 S.9.3 节中给出。K 系统在 t = 28 天后的基因表达概率分布,如图 J 所示,参数值和初始条件在 SI 第 S.9.4 节中给出。参见 SI 图 SM.1 B 和 SM.2。在图 I 和 J 中,DNMT3A 动力学被建模为随时间呈指数下降的脉冲(参见第 S.1.1 节 - SI 方程 (SM.7))。在我们的模型中,ε (ζ) 是衡量基础(招募)擦除率与每次修饰的自催化率之间比率的参数。参见 SI 图 SM.1 E 和 SM.3。