专业上皮对于维持循环至关重要,并报告说,上皮中KEAP1的缺失将导致小鼠肾结通(Noel等,2016)。但尚不清楚什么是主要贡献者,不同细胞类型之间的协同相互作用可能对维持肾脏功能至关重要。许多基因涉及维持正常肾功能,例如CLMP和GFRA3。以前的一个在肾脏发育中起重要作用,它的缺失将导致严重的双侧肾积水(Rathjen和Jüttner,2023年)。后者是GDNF家族受体的成员,GDNF是一种分泌的分子,并参与输尿管萌芽(Uetani and Bouchard,2009年)。其他转录因子,例如gata3,lim1,对于肾脏结构也很重要(Chia等,2011)(Boualia等,2013)。小鼠胚胎中GATA3突变会在出生时引起肤色,这表明GATA3因子是尿路突变所必需的(Chia等,2011)。FOXF1是肺发育的另一个因素,也发现突变导致肾结通(BZDęGA等,2023)。通过肾积水中探索了几乎没有潜在的关键基因或转录因子,潜在的遗传机制仍在进一步研究。最近的研究表明,调节元件中染色质状态的变化在基因表达中起着至关重要的作用,并可能导致严重疾病(Mirabella等,2016)(Klemm等,2019)。尽管如此,我们仍然对肤色期间异常组织和正常组织之间染色质状态的改变的了解有限。全面理解肤色中的基因表达和相关调节网络将有助于我们识别发病机理并发现疾病的新疗法靶标。我们试图在这项研究中检测正常和肾脏症之间的差异表达基因(DEG),然后探索疾病的表观遗传变化,包括ATAC-SEQ检测到的DNA甲基化预测和相关的调节元件,检测到了差异性可及的区域(DARS)(图1A)。为了可视化Hub-Gene在肾积水中,我们还通过String构建了蛋白质 - 蛋白质网络(PPI)。为了验证获得的DEGS和DARS之间的潜在关系,我们进一步检测到DEG和DARS之间的染色质结构,试图在肾结通中填充调节机制。
摘要背景:人类疟原虫恶性疟原虫中异染色质的维持、调节和动态变化因其在互斥毒力基因表达和关键发育调节因子沉默中的调节作用而受到越来越多的关注。染色质免疫沉淀后测序 (ChIP-seq) 等全基因组分析的出现有助于了解染色质组成;然而,即使在模型生物中,ChIP-seq 实验也容易受到由潜在染色质结构引起的内在实验偏差的影响。方法:我们进行了一项对照 ChIP-seq 实验,重新分析了之前发表的 ChIP-seq 数据集,并比较了不同的分析方法,以表征恶性疟原虫全基因组分析的偏差。结果:我们发现用于 ChIP-seq 标准化的输入对照样本中的异染色质区域在整个恶性疟原虫基因组的测序覆盖率方面系统性地代表性不足。这种代表性不足,加上非特异性或低效的免疫沉淀,可能导致在这些区域识别出假富集和峰值。我们观察到,在特定和有效的 ChIP-seq 实验中,背景水平也会出现这种偏差。我们进一步报告了不同的读取映射方法如何扭曲高度相似的亚端粒区域和毒力基因家族中的测序覆盖率。为了改善这些问题,我们讨论了可用于表征真正的染色质相关蛋白的正交方法。结论:我们的结果强调了染色质结构对寄生虫全基因组分析的影响以及谨慎的必要性
真核基因组以3D方式组织,并且在这些量表中的每一种中作用的不同机制都会有助于转录调节。但是,3D染色质结构中的大型单细胞变异性是了解如何以稳健和有效的方式在细胞类型之间差异调节转录的挑战。在这里,我们描述了3D染色质结构的不同机制有助于细胞类型特异性的转录调节。令人兴奋的是,几种能够在其天然组织环境中测量单个细胞中3D染色质构象和转录的新方法,或者检测顺体调节相互作用的动力学,开始允许对染色质结构噪声进行定量解剖,并将其与不同细胞类型之间的转录相关联。
基因组编辑对于医学和研究目的都具有重要价值。未来的医学应用包括纠正与疾病相关的突变、破坏致病基因,甚至引入新基因(例如,使免疫系统对肿瘤细胞敏感)。研究应用范围从在细胞系或生物体中创建敲除/敲除,和/或引入突变,以研究特定蛋白质、通路或过程的作用,到创建人源化疾病模型。鉴于实际应用的诱人范围,人们在开发基因组编辑方法方面付出了相当大的努力也就不足为奇了。引入基因组变化的传统方式是使用自发重组,要么引入 DNA 突变,要么插入允许进一步使用重组酶(如 Cre)切除基因的序列 [参见 Sauer (2002) 的评论]。随后,锌指核酸酶 (ZFN) 和转录激活因子样效应物核酸酶 (TALEN) 的发现,使得该领域取得了长足的进步,因为它们可以在所需的基因组位置而不是随机的位置引入 DNA 断裂 [参见 Gaj 等人 (2013) 的综述]。尽管如此,基因组编辑领域最大的进步是最近发现的成簇的规律间隔回文重复 (CRISPR) 相关 (Cas) 系统 (Ishino 等人,1987 年;Jansen 等人,2002 年;Jinek 等人,2012 年;Cong 等人,2013 年;Mali 等人,2013 年)。
摘要:基于 CRISPR 的表观基因组编辑使用 dCas9 作为平台,在选定的位点招募转录或染色质调节因子。尽管最近取得了进展,但这些方法在体内研究染色质功能方面的全部潜力仍然难以充分发挥。在这篇综述中,我们讨论了植物和动物的最新进展如何为研究染色质调节因子的功能提供了新途径,并解决了通常相互关联的相关调节的复杂性。虽然已经开发出有效的转录工程方法,并且可以用作改变位点染色质状态的工具,但在植物中直接操纵染色质调节因子的例子仍然很少。这些报告还揭示了表观基因组工程方法的缺陷和局限性,但它们仍然具有参考价值,因为它们通常与位点和上下文相关的特征有关,包括 DNA 可及性、初始染色质和转录状态或细胞动力学。重点介绍了不同生物体为克服甚至利用这些局限性而实施的策略,这将进一步提高我们建立染色质动力学对基因组调控的因果关系和层次结构的能力。
抽象染色质组织是干细胞多能和分化的关键因素。然而,尚未探索增强子循环蛋白LDB1在干细胞中的作用。我们使用CRISPR/CAS9编辑产生了LDB1( - / - )胚胎干细胞(ESC),并观察到LDB1损失后关键干细胞因子SOX2和KLF4的降低。源自LDB1( - / - )ESC的胚胎体(EB)显示出谱系特异性标记的表达降低,并且能力受损能够经历末端分化为红细胞。差异基因表达,包括LIN28介导的自我更新途径基因,在WT和LDB1( - / - )ESC和EB之间观察到,但在分化为成红细胞细胞后最为明显。LDB1占据了超级增强剂,包括多能基因的超级增强剂,以及多能因素。LDB1损失导致ESC和EB中的全球染色质可及性降低。有条件的LDB1缺陷小鼠在骨髓细胞上显示造血干细胞标记降低,LIN28途径的失调。因此,LDB1功能对于ESC和EB发育至关重要,在分化为红细胞时变得越来越重要。关键字:
。CC-BY-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 12 日发布。;https://doi.org/10.1101/2025.01.09.632202 doi:bioRxiv 预印本
抽象目标骨关节炎是一种复杂的疾病,具有巨大的公共卫生负担。基因组广泛的关联研究(GWAS)已经鉴定出数百个骨关节炎相关的序列变体,但是这些信号支撑的效应基因在很大程度上仍然难以捉摸。了解三维(3D)空间中的染色体组织对于以组织方式(例如,基因和调节元件之间的遥远基因组特征(例如,基因和调节元素之间)之间的长距离接触至关重要。在这里,我们生成了原发性骨关节炎软骨细胞的第一个整个基因组染色体构象分析(HI-C)图,并确定了该疾病的新型候选效应基因。方法从8例膝关节骨关节炎患者收集的原发软骨细胞进行了HI-C分析,以将染色体结构与基因组序列联系起来。然后将鉴定的环与骨关节炎GWAS结果和来自原发性膝关节骨关节炎软骨细胞的表观基因组数据结合在一起,以通过增强子启动子相互作用来鉴定与基因调节有关的变异。结果,我们确定了与77个骨关节炎GWAS信号相关的染色质环锚固中的345种遗传变异。例如,PAPPA与胰岛素类似生长因子1(IGF-1)蛋白的周转直接相关,而IGF-1是修复受损软骨细胞受损的重要因素。结论我们构建了第一张原代人软骨细胞的高图,并将其作为科学界的资源提供。Ten of these variants reside directly in enhancer regions of 10 newly described active enhancer- promoter loops, identified with multiomics analysis of publicly available chromatin immunoprecipitation sequencing (ChIP- seq) and assay for transposase- accessible chromatin using sequencing (ATAC- seq) data from primary knee chondrocyte cells, pointing to two new candidate effector genes SPRY4 and PAPPA(妊娠与血浆蛋白A)以及对已知参与骨关节炎的基因SLC44A2的进一步支持。通过将3D基因组学与大规模的遗传关联和表观遗传学数据相结合,我们确定了骨关节炎的新型候选效应基因,从而增强了我们对疾病的理解,并可以作为假定的高价值新型药物靶标。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2025年1月1日发布。 https://doi.org/10.1101/2024.12.30.630839 doi:Biorxiv Preprint
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 12 月 21 日发布。;https://doi.org/10.1101/2024.12.19.629292 doi:bioRxiv preprint
