将可拉伸电极或装置从一种基底转移到另一种薄弹性体上是一项艰巨的任务,因为弹性印章通常会在脱粘界面处产生巨大的应变,超出电极的拉伸极限。如果印章是刚性的,则不会发生这种情况。然而,刚性材料不能用作可拉伸电极的基底。在此,具有可调刚性的丝素蛋白(通过控制相对湿度,杨氏模量可以从 134 kPa 变为 1.84 GPa)用于将高度可拉伸的金属网络转移为高度可塑的表皮电极。丝素蛋白印章在剥离过程中被调节为刚性,然后在层压在湿润的人体皮肤上时作为基底变得柔软且高度可拉伸。此外,表皮电极在连接超过 10 天后没有表现出皮肤刺激或炎症。与商用 Ag-AgCl 凝胶电极相比,高柔顺性可降低界面阻抗,并在测量肌电信号时降低电极的噪声。在转移的不同阶段调整刚度的策略是一种通用方法,可以扩展到转移其他可拉伸电极和表皮电子器件、人机界面和软机器人。
摘要 考虑进行板级跌落试验,目的是开发一个具有物理意义的分析预测模型,用于评估焊料材料中预期的冲击引起的动态应力。讨论了球栅阵列 (BGA) 和列栅阵列 (CGA) 设计。直观地感觉,虽然应用 CGA 技术缓解焊料材料的热应力可能非常有效(因为 CGA 与 BGA 相比具有更大的界面柔顺性),但当 PCB/封装经历动态负载时,情况可能会大不相同。这是因为 CGA 接头的质量大大超过 BGA 互连的质量,并且在 CGA 设计的情况下,相应的惯性力可能大得多。针对相当随意但又现实的输入数据进行的数值示例表明,CGA 设计的焊料材料中的动态应力甚至高于 BGA 互连中的应力。这尤其意味着,应彻底选择板级测试中具有物理意义的跌落高度,并且对于 BGA 和 CGA 设计,该高度应该有所不同。
软机器人是为了解决传统机器人在处理人和精密生物物品时的局限性而创建的。[1-4] 软气动执行器(SPA)的工作原理是将调节的正压或负压注入柔性结构内的密封腔中。这些执行器可以弯曲、扭曲、伸展或收缩。[5] 执行器对施加压力的反应取决于腔体的材料和形状。执行器的几何形状或多材料分布可以在更广泛的意义上得到改进。软执行器和机器人的自主设计可能受益于优化壁厚和改变腔体结构。由于软机器人固有的柔顺性,软执行器可以产生相对被动的变形,并根据被处理的物体的形状进行修改。[6] 因此,腔体对弯曲和驱动的影响对于增强软执行器的能力至关重要。此外,有限元法 (FEM) 还可用于改进软机器人,预测其运动,并消除制造后出现的问题。[7] 人们已经采用了各种各样的新开发来提高软机器人的效率,并且已经使用了许多新设计来实现软机器人执行器的多功能性和增强的适应性。[8 – 13]
应用。 [3] 然而,尽管取得了这些进展,这些执行器要实现大输出力和高重量标准化工作能力(以下称为“工作能力”)仍然具有挑战性。 [4] 这是因为组成材料较软且体积有限,难以储存和释放高机械能。 [2d,5] 目前,大多数微型软执行器的工作能力相对较低,在 10 –3 至 10 2 J kg − 1 范围内(图 S1,支持信息),[3b,6] 这使得它们无法用于潜在的医疗器械、操作和其他需要高工作能力的应用。 [7] 此外,现有磁控软执行器的最大输出力约为 60 µN。然而,许多医疗程序,如支架植入术 [8] 要求装置的输出力超过 1 N,这约为磁控软执行器最大输出力的 10软气动执行器同时提供了高机械性能和柔顺性,使其在强力操控中得到了广泛的应用。[9] 具体而言,尽管杨氏模量较小(约为 10 kPa),但这些执行器可以提供高工作能力(9 J g-1),比大多数已报道的执行器的性能高出约 10 1 –10 3 倍。尽管形状记忆合金具有类似的工作能力,但它是执行器的 10 6 倍
通过进化而完善的设计已为仿生动物机器人提供了灵感,它们可以模仿猎豹的运动和水母的柔顺性;生物混合机器人更进一步,将生物材料直接融入工程系统。仿生和生物混合带来了新的、令人兴奋的研究,但人类一直依赖生物材料——来自生物体的非生物材料——因为他们的早期祖先穿着动物皮作为衣服,用骨头作为工具。在这项工作中,一只无生命的蜘蛛被重新用作一个随时可用的执行器,只需一个简单的制造步骤,开创了“死机器人”领域,其中生物材料被用作机器人组件。蜘蛛独特的行走机制——依靠液压而不是拮抗肌对来伸展腿部——产生了一个死机器人夹持器,它自然处于闭合状态,可以通过施加压力打开。死灵机器人抓手能够抓取不规则几何形状的物体,抓取重量可达自身重量的 130%。此外,抓手可用作手持设备,并可在户外环境中伪装。死灵机器人可进一步扩展,以整合来自其他生物的生物材料,这些生物具有类似的液压机制,可用于运动和关节活动。
材料的性能至关重要,如柔顺性、柔韧性以及与人机交互的整体安全性。通常,传统机器人材料的刚性和硬度限制了它们在某些医疗保健或生物医学领域的应用。[1–3] 材料科学的最新发展使得制造仿生软机器人成为可能,这种机器人能够执行一些简单类型的驱动 [4],包括爬行、[5] 抓握 [6] 或改变形状 [7],但它们仍然远远达不到生物体的复杂性和运动精细度。软机器人最受研究的应用之一是开发能够模仿哺乳动物天然肌肉组织性能的人造肌肉。肌肉组织本质上很复杂,既强壮又快速,同时通过其纤维束的有效自组织实现各种各样的运动。然而,目前的材料仍然缺乏完全复制这些特性的能力。 [8] 此外,人们强烈希望获得生物组织的其他特性,如自我修复、能源效率、功率重量比、适应性或生物传感等,但这些特性很难用人造软材料实现。[9] 生物混合机器人技术应运而生,作为一种协同策略,将生物实体和人造材料的最佳特性整合到更高效、更复杂的系统中,希望能克服当前软机器人面临的困难。已经提出了几种统一生物混合设备开发的策略
材料的性能至关重要,如柔顺性、柔韧性以及与人机交互的整体安全性。通常,传统机器人材料的刚性和硬度限制了它们在某些医疗保健或生物医学领域的应用。[1–3] 材料科学的最新发展使得制造仿生软机器人成为可能,这种机器人能够执行一些简单类型的驱动 [4],包括爬行、[5] 抓握 [6] 或改变形状 [7],但它们仍然远远达不到生物体的复杂性和运动精细度。软机器人最受研究的应用之一是开发能够模仿哺乳动物天然肌肉组织性能的人造肌肉。肌肉组织本质上很复杂,既强壮又快速,同时通过其纤维束的有效自组织实现各种各样的运动。然而,目前的材料仍然缺乏完全复制这些特性的能力。 [8] 此外,人们强烈希望获得生物组织的其他特性,如自我修复、能源效率、功率重量比、适应性或生物传感等,但这些特性很难用人造软材料实现。[9] 生物混合机器人技术应运而生,作为一种协同策略,将生物实体和人造材料的最佳特性整合到更高效、更复杂的系统中,希望能克服当前软机器人面临的困难。已经提出了几种统一生物混合设备开发的策略
TYLER SCHILLING:当然!在过去 35 年里,我们一直在寻找提高客户海上生产效率的方法,我们最新的产品是 HD 和 UHD ROV。我们基于这些先前的开发成果取得的最新突破是 GEMINI。它之所以被称为 GEMINI,是因为它在前面有两个相同的机器人手臂。事实上,在开发原型中,一只手臂被命名为 Castor,另一只手臂被命名为 Pollux:这是双子座双胞胎的名字。这是一个非常雄心勃勃的飞跃,它涉及许多非常重要的技术,所有这些技术都专注于让工作系统始终在工作现场执行任务。此外,它使机器的成功操作和这些关键任务的完成比以往任何时候都容易得多。我们采用的关键技术首先是自动工具交换;GEMINI 系统携带 30 种不同的工具,可以在任一机器人手臂上自动交换。通常,更换任一手臂上的任何工具只需不到两分钟,这使得机器可以停留在工作现场(目标是 30 天),而不必无休止地往返地面。这就像你在做一个家庭装修项目,而 DIY 商店离这里有 8 小时的路程,每次你需要一个新工具时,你都必须跑一趟。显然,一键更换 30 种工具对于行业来说是一项非常重要的转变。事实上,在第一次工作不到一周后,它的价值就向客户展示了出来。我们开发的第二项真正重要的技术是机械臂的力柔顺性。这可以减轻工具接触时产生的所有意外力
Paris、Gomez 和 Anderson 提出了描述疲劳裂纹扩展 (FCG) 的先锋方法,表明 FCG 速率 da/dN 与应力强度因子 (SIF) 范围 Δ K [1] 有很好的相关性。基于这一想法,Paris 和 Erdogan 提出了经典抛物线方程 da/dN = A ⋅ Δ K m ,其中 Δ K = K max – K min 如果 K min ≥ 0 [2] ,该方程通常可以很好地模拟固定载荷条件下的第二阶段 FCG。已经提出了许多类似的方程来考虑由其他参数引起的相关 FCG 效应,例如峰值 SIF K max 或载荷比 R = K min /K max、SIF 范围 FCG 阈值 Δ K th 和断裂韧性 K C ,例如在 [3] 中进行了综述。另一种 FCG 模型是 Elber 的 da/dN = f ( Δ K e ffi ) 假设,该假设基于塑性诱导裂纹闭合 (PICC) 概念,其中,如果 K op > K min ,则 Δ K e ffi = K max – K op ,否则,如果 K op < K min ,则 Δ K e ffi = Δ K ,将 K op 定义为裂纹张开 SIF。通过测量裂纹板在载荷循环过程中的柔顺性,Elber 发现疲劳裂纹可能需要拉伸张开载荷 P op > 0 才能完全张开其表面,因为它们会在包裹它们的塑性尾流内生长 [4] 。然后他假设,只有在载荷 P > P op 下裂纹完全张开后,它们才能暴露尖端,并在其前方承受进一步的疲劳损伤,这样就假设 Δ K e eff 是 FCG 的实际驱动力 [5] 。Elber 的概念可以合理地解释许多 FCG 特性。它们可以解释例如假设裂纹尖端前的塑性区 pz OL 因
软体机器人领域发展迅速,其目标是创造出机械柔顺性更强、功能更全、与人类交互更安全的机器人 [1]。为了实现这一目标,研究人员开发出了与传统机器人部件类似的柔性部件,用于传感 [2]、[3]、驱动 [4] 和计算 [5]。一部分软体机器人利用电磁力实现驱动 [6]–[8]。许多研究人员将磁性粒子嵌入有机硅弹性体中,制成可通过外部磁场 [9]–[12] 或局部磁场 [13]、[14] 驱动的软磁复合材料。Kohls 等人设计了一种带有液态金属线圈和软磁复合材料的软电磁铁 [15],然后将这项工作扩展为生产全软电动机 [16]。Li 等人引入了磁性油灰作为软体机器人的可重新编程、自修复建筑材料 [17]。为了替代耗电的电磁铁,机器人专家使用了电永磁体 [18]。电永磁体由两个磁化强度相同但矫顽力不同的永磁体组成 [19]。导电线圈缠绕在磁体周围,使得短暂的电流脉冲可以产生足够强的磁场来反转低矫顽力磁体的磁化,但不足以影响高矫顽力磁体。因此,通过选择性地反转低矫顽力磁体的极性,可以打开(非零净磁化)或关闭(中性净磁化)。与持续吸取电流的电磁铁相比,电永磁体仅在切换状态时短暂消耗能量;永磁体即使在开启状态下也不会消耗电能 [20]。