二维(2D)结构由具有高载体迁移率的原子薄材料组成的二维(2D)结构已被研究为未来晶体管1-4的候选。然而,由于合适的高质量介电的不可用,尽管具有优越的物理和电气特性,但2D现场效应晶体管(FET)仍无法获得全部理论潜力和优势。在这里,我们证明了原子上薄的单晶Al 2 O 3(C-al 2 O 3)作为2D FET中的高质量顶栅介电。通过使用插入式氧化技术,在室温下,在单晶Al表面形成了稳定,化学计量和原子较薄的C-Al 2 O 3层,厚度为1.25 nm。由于有利的晶体结构和明确定义的接口,栅极泄漏电流,界面状态密度和C-AL 2 O 3的介电强度3符合国际路线图3,5,7的国际路线图3,5,7。通过由源,排水,电介质材料和门组成的一步转移过程,我们实现了顶部的MOS 2 FET,其特征是以61 mV的陡峭亚阈值摇摆为61 mV-1-1-1,高/OFF电流比为10 8,并且非常小的滞后率为10 mV。这种技术和材料证明了产生适合整合到完全可扩展的晚期2D FET的高质量单晶氧化物的可能性,包括负电容晶体管和自旋晶体管。
该项目部分资金由联邦公路管理局研究与发展办公室提供。作者对此表示感谢。作者还要感谢联邦公路管理局的 James Cooper
可控的方式。[6] 然而,自上而下的技术不可扩展,且大多数技术耗时耗力,从而阻碍了它们的潜在应用。特别是手性微结构可以通过调制飞秒激光焦点的单次曝光快速制造。[7] 其几何形状严格由可实现的结构化焦点决定,并且得到的表面质量相当差。相反,自下而上的方法提供了一种经济高效且可扩展的替代方法,通过由不同材料(如共聚物、[8] 肽、[9] 纳米粒子 [10] 和 DNA 四面体 [11] 制成的亚基的顺序自组装来创建分层纳米结构。不幸的是,由于自发自组装过程的固有特点,对几何形状、空间排列、规律性和螺旋性的精确控制非常困难。自上而下和自下而上相结合的混合制造技术的最新进展有望克服上述一些限制。[12] 特别是,通过介导弹性毛细管相互作用的毛细管力驱动自组装引起了人们的极大兴趣,因为它具有简单性和可扩展性的独特优势,[13] 并且在一定程度上已用于混合制造策略。基于光刻的技术已经实现中尺度刷毛的制造,并且通过利用弹性毛细管聚结已经得到高度有序的螺旋簇。[14] 然而,由于圆形原纤维具有旋转对称性,因此单个簇所实现的手性是随机的。虽然可以通过将横截面渲染为矩形来获得特定的手性重排,但手性的可调性仍然有限。利用电子束光刻技术实现10纳米级的纳米柱,然后通过毛细管力诱导的纳米内聚力进行自组装。[15] 利用多光束干涉光刻技术,结合溶液蒸发过程中的毛细管力,制备并组装大面积图案化微柱。[16] 我们之前的研究表明,可以利用毛细管力来驱动直柱生成具有高度可控性的分级微结构。[17] 然而,由于毛细管力在微尺度上很难利用,它们都无法实现可控的手性结构。因此,开发一种简便、可控、高效的功能手性结构制备方法是十分有必要的。
严格回顾了各种吸附剂在批量吸附和柱吸附中去除重金属的性能。介绍了吸附的基本思想,包括化学吸附和物理吸附及其组分、吸附剂和吸附质。研究了使用各种吸附质,即重金属(Cr、Cd、Pb、Ni 和 Cu)的吸附研究。深入讨论了一系列用于去除重金属的批量吸附和柱吸附的各种设计实验。参考了批量吸附和柱吸附研究的区别。本文深入解释了批量吸附和柱吸附中不同参数的澄清。完整介绍了柱吸附的各种参数,即入口离子浓度、流速、床高,以及批量吸附的各种参数,即接触时间、pH、温度和吸附剂剂量。很好地描述了两种吸附的等温线模型和动力学模型。此外,还完整观察到了设计柱吸附的突破曲线。最后,揭示了两种吸附在现实世界中的适应性困难。关键词:柱吸附;批量吸附;吸附剂;版权所有 © 2020 PENERBIT AKADEMIA BARU - 保留所有权利
采用单晶体管堆叠栅极单元结构,通过双层多晶硅技术实现。单个单元由底部浮栅和顶部选择栅组成(见图 1)。顶栅连接到行解码器,而浮栅用于电荷存储。通过将高能电子通过氧化物注入浮栅来对单元进行编程。浮栅上电荷的存在会导致单元阈值发生变化(参见图 2)。在初始状态下,单元具有低阈值(VTH1),这将使晶体管在选择单元时(通过顶部选择栅)导通。编程将阈值移至更高水平(VTHO),从而防止单元晶体管在被选择时导通。可以通过检查感测阈值(VTHS)下的状态来确定单元的状态(即是否已编程),如图 2 中的虚线所示。
本文介绍了 408 nm – 941 nm 范围内高灵敏度栅/体连接 (GBT) 金属氧化物半导体场效应晶体管 (MOSFET) 型光电探测器的光电流特性。高灵敏度对于光电探测器非常重要,它用于多种科学和工业应用。由于其固有的放大特性,GBT MOSFET 型光电探测器表现出高灵敏度。所提出的 GBT MOSFET 型光电探测器是通过标准 0.18 µm 互补金属氧化物半导体 (CMOS) 工艺设计和制造的,并分析了其特性。分析了光电探测器的宽长比 (W/L)、偏置电压和入射光波长。实验证实,所提出的 GBT MOSFET 型光电探测器在 408 nm – 941 nm 范围内的灵敏度比相同面积的 PN 结光电二极管高 100 倍以上。
摘要:3D NAND闪存作为存储器计算的有力候选者,因其高计算效率而备受关注,其性能优于传统的冯·诺依曼体系结构。为确保3D NAND闪存真正融入存储器芯片的计算中,急需一种具有高密度和大开关电流比的候选者。本文,我们首次报道在双层Si量子点浮栅MOS结构中实现高密度多级存储的3D NAND闪存。最大的电容电压(CV)存储窗口为6.6 V,是单层nc-Si量子点器件的两倍。此外,在10 5 s的保持时间后可以保持5.5 V的稳定存储窗口。在充电过程中观察到明显的电导电压(GV)峰,进一步证实了双层Si量子点可以实现多级存储。此外,采用nc-Si浮栅的3D NAND闪存的开/关比可以达到10 4 ,表现出N型沟道耗尽工作模式的特征。经过10 5 次P/E循环后,存储窗口可以维持在3 V。在+7 V和-7 V偏压下,编程和擦除速度可以达到100 µs。我们将双层Si量子点引入3D NAND浮栅存储器,为实现存储器中的计算提供了一种新途径。
目标和产品 本指南文件介绍了在高可靠性应用中使用先进塑料球栅阵列 (BGA) 和芯片尺寸 BGA (DSBGA) — 商用现货 (COTS) — 封装技术和组件的建议。最先进和高密度的 BGA 采用倒装芯片球栅阵列 (FCBGA) 配置,输入/输出 (I/O) 超过 2000 个,间距为 1 毫米。间距小于 1 毫米(低至 0.3 毫米)的 DSBGA 通常最多有几百个 I/O。由于更大芯片的产量挑战和节点缩小的高成本,业界已转向实施系统级封装 (SiP)。先进的 SiP 集成芯片技术(称为 Chiplet)是电子封装技术的下一个范式转变。本指南简要讨论了先进的 COTS 封装技术趋势,并提供了两个测试评估示例;一个针对 BGA,另一个针对 DSBGA。对于这两个类别,测试结果涵盖了关键工艺问题、质量指标和质量保证 (QA) 控制参数,随后提供了全面的测试数据以解决热循环可靠性和局限性。最后,报告摘要中包括了从这些评估中吸取的经验教训得出的关键建议。针对低风险灌注航天应用,给出了 COTS BGA/DSBGA 封装技术的具体建议,同时考虑了任务、环境、应用和寿命 (MEAL) 要求。
1 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029;liyongliang@ime.ac.cn(YL);zhouna@ime.ac.cn(NZ);xiongwenjuan@ime.ac.cn(WX);zhangqingzhu@ime.ac.cn(QZ);duanyan@ime.ac.cn(AD);gaojianfeng@ime.ac.cn(JG);kongzhenzhen@ime.ac.cn(ZK);linhongxiao@ime.ac.cn(HL);xiangjinjuan@ime.ac.cn(JX);lichen2017@ime.ac.cn(CL);yinxiaogen@ime.ac.cn(XY);wangxiaolei@ime.ac.cn(XW);yanghong@ime.ac.cn(HY);maxueli@ime.ac.cn(XM); hanjianghao@ime.ac.cn (JH); tyang@ime.ac.cn (TY); lijunfeng@ime.ac.cn (JL); yinhuaxiang@ime.ac.cn (HY); zhuhuilong@ime.ac.cn (HZ); luojun@ime.ac.cn (JL); rad@ime.ac.cn (HHR) 2 中国科学院大学微电子研究所,北京 100049 3 北京有色金属研究总院智能传感新材料国家重点实验室,北京 100088 4 北方工业大学电子信息工程学院,北京 100144;zhangj@ncut.edu.cn (JZ); tairanhu1@gmail.com (TH); chrisaigakki@gmail.com (ZC) 5 中瑞典大学电子设计系,Holmgatan 10, 85170 Sundsvall,瑞典 * 通讯地址:lijunjie@ime.ac.cn (JL);wangguilei@ime.ac.cn (GW);wangwenwu@ime.ac.cn (WW);电话:+ 86-010-8299-5508 (WW)