《美国国家标准与技术研究所研究杂志》刊登了测量方法和分析方面的进展,这些进展与 NIST 作为国家测量科学实验室的职责相一致。它包括有关物理科学和工程领域中进行精确测量的仪器的报告,以及能够在可能缺少测量的区域中预测信息现象的数学模型。有关关键数据、校准技术、质量保证计划和良好特征参考材料的论文反映了 NIST 在这些领域的计划。该杂志的特别版专门刊登测量科学特定领域的特邀论文。偶尔会出现与研究所的技术和科学计划相关的主题的调查文章和会议报告。
GTI 的专业知识涵盖了此类基于视觉的框架所涉及的所有必要研究领域。人们一直在努力研究增强型 2D 分割技术 [1] [2]、通过多个线索描述符进行 2D 跟踪 [3] 以及集中式网络中的 3D 跟踪 [4],并且仍在继续。还有一些与 3D 重建 [5] 和相关自动校准技术相关的工作。移动环境研究主要与安全应用有关,例如本文中描述的基于视频的 ADAS,多年来这一直是该小组的重要研究方向,现在随着 I-WAY 项目的发展,这一方向比以往任何时候都更加活跃。大量研究工作一直在指导基于视频的 ADAS 的开发,并在许多国际会议上发表 [6]-[13]。
本文介绍了用于微波矢量网络分析仪校准的 3D 打印主要标准的设计、制造和测试。这些标准是一条短路和四分之一波长的线路,设计用于直通反射线校准技术。这些标准采用金属管矩形波导实现,覆盖频率范围从 12 GHz 到 18 GHz(即 Ku 波段)。这些标准是基于聚合物的 3D 打印,随后进行金属镀层以提供所需的电导率。这些标准的性能与英国主要国家微波散射参数测量系统中使用的传统加工标准进行了比较。作者认为,这是首次使用 3D 打印技术来制作此类校准标准,并且这可能带来一种为此类测量提供计量可追溯性的新方法。版权所有 © 2020 年,由 Elsevier Ltd. 出版。保留所有权利。
通过分析已经通过血浆的激光束的横向强度分布来描述高能密度等离子体的特性。使用射线传递矩阵分析,可以通过光束偏转角度直接校准折光仪的输出。本文描述了一种新颖的方法,该方法是根据激光束的横向强度分布的空间波数校准折光仪输出的方法。这是通过用栅格结构代替等离子体来调节梁的横向强度,从而产生以已知傅立叶变换的强度分布来实现的。这种校准技术将生成偏转角度的一对一映射到波数,并可以测量系统可用的傅立叶空间的尺寸。激光束穿过高能密度等离子体时产生的波数谱可能包含有关等离子体中存在的密度波动类型的信息。
• ISO/IEC 17025 认证校准:ISO/IEC 17025 是校准和测试实验室技术能力的全球标准。通过 ANAB 认证可验证我们实验室和员工的技术能力以及对严格质量计划的遵守情况。ANAB 全面评估我们的能力和流程,验证和批准测量参数、每个范围和测试的最佳不确定度,甚至评估我们的校准技术、程序和设备。此级别的校准可确保您对测试设备具有最高程度的信心。认证校准包括根据 17025 标准进行的全面性能测试、完整的数据报告和测量不确定度。还将应用校准标签和无效封条。完全符合标准和您的质量要求,您还将收到一份 NIST 可追溯校准证书,上面印有我们认证机构的标志和我们实验室的证书编号。
摘要 — 为了更好地预测功率转换器中晶体管的高频开关操作,必须准确评估这些器件的接入元件,如电阻和电感。本文报告了使用 S 参数对氮化镓 (GaN) 封装功率晶体管进行特性分析,以提取源自欧姆接触和封装的寄生效应。在封装晶体管时,使用在 FR4 印刷电路板 (PCB) 上设计的特定测试夹具设置校准技术,以便从测量的参数中获取晶体管平面中的 S 参数。所提出的方法基于改进的“冷 FET”技术和关断状态测量。它应用于市售的增强型 GaN HEMT(高电子迁移率晶体管)。将提取的寄生元件与器件制造商提供的参考值进行比较。还评估了结温对漏极和源极电阻的影响。最后,提出了这些寄生效应的电热模型。
- 从不同传感器领域(光学摄像机、激光雷达、声纳、多波束、事件摄像机、高光谱传感)的低质量和/或稀缺数据中进行稳健识别。- 在高度动态环境或长期部署机器人系统中进行稳健识别。- 图像/视频恢复和增强,以消除由于低照度、色彩失真、恶劣天气、能见度差而导致的退化。- 新型传感器开发或传感器融合和校准技术,实现稳健的视觉感知。- 模拟环境和持续系统集成,即合成数据生成、模拟到现实世界的转换、硬件在环。- 视觉系统的低质量和稀缺数据挖掘、增强和处理方法。- 上述任何主题中的深度学习实践和机器学习管道。- 经过现场试验和部署及数据管理最佳实践的大量测试系统。- 对抗性和挑战性环境下计算机视觉算法和应用调查。- 上述任何一项在基于视觉的定位、配准、映射、建模、姿势估计和其他领域的应用。
随着量子计算机的大小和复杂度增加,量子位 (qubit) 表征和门优化成为复杂且耗时的任务。当前的校准技术需要复杂而繁琐的测量来调整量子位和门,无法轻易扩展到大规模量子系统。我们开发了一种简洁的自动校准协议来表征量子位并优化门,使用 QubiC,这是一种基于开源 FPGA(现场可编程门阵列)的超导量子信息处理器控制和测量系统。我们提出了基于多维损失的单量子位门优化和双量子位 CNOT 门校准的全 XY 平面测量方法。我们证明 QubiC 自动校准协议能够在劳伦斯伯克利国家实验室的高级量子测试平台上运行的最先进的 transmon 型处理器上提供高保真门。通过随机基准测试测得的单量子位和双量子位 Clifford 门不保真度为 4。分别为 9(1 . 1) × 10 − 4 和 1 . 4(3) × 10 − 2。
随着量子计算机的大小和复杂度增加,量子位 (qubit) 表征和门优化成为复杂且耗时的任务。当前的校准技术需要复杂而繁琐的测量来调整量子位和门,无法轻易扩展到大规模量子系统。我们开发了一种简洁的自动校准协议来表征量子位并优化门,使用 QubiC,这是一种基于开源 FPGA(现场可编程门阵列)的超导量子信息处理器控制和测量系统。我们提出了基于多维损失的单量子位门优化和双量子位 CNOT 门校准的全 XY 平面测量方法。我们证明 QubiC 自动校准协议能够在劳伦斯伯克利国家实验室的高级量子测试平台上运行的最先进的 transmon 型处理器上提供高保真门。通过随机基准测试测得的单量子位和双量子位 Clifford 门不保真度为 4。分别为 9(1 . 1) × 10 − 4 和 1 . 4(3) × 10 − 2。
I. 引言 近年来,数字射频 (RF) 发射器 (TX) 越来越受欢迎。在数字域中实现发射功能有许多优势,例如,可以省去模拟模块,如可变增益放大器、失调消除数模转换器 (DAC) 和预驱动器。RF 发射器(无论是模拟还是数字)面临的最大挑战是线性度和效率之间的权衡,这反过来又导致了许多线性化技术的出现。由于芯片温度会随 TX 输出功率而有很大变化,因此必须实时继续线性化;也就是说,如果前台校准技术试图校正高度非线性的输出级,则它们会被证明是不够的。本文介绍了一种新的 TX 线性化方法,可在后台校正静态和动态非线性。校正的有效性允许设计 DAC 以实现具有几乎任意积分非线性 (INL) 的最大效率。以宽带码分多址 (WCDMA) 标准为例,简单、紧凑的架构提供了迄今为止报告的最高效率。该发射器采用 28 纳米标准 CMOS 技术实现,可提供 + 24.1 dBm 的功率,相邻信道功率比 (ACPR) 为 − 35.4 dB,总效率为 50%。
