功能梯度材料 (FGM) 的概念是为了开发高性能耐热材料而提出的,其中耐热陶瓷与金属混合[1]。FGM 是一类先进的异质材料,其成分和性能表现出可控的空间变化,从而导致其性能 (热/电导率、耐腐蚀、机械、生物化学等) 逐渐变化。FGM 背后的主要思想包括一种不能满足所有设计要求的材料和一种适用于特定位置和操作条件的不同材料。由于这种协同效应,FGM 可应用于不同领域,例如生物医学、汽车和航空航天、电子、光学、核应用、反应堆部件和能量转换 [2]。FGM 的特点是材料之间可以逐渐转变,也可以不连续/突然转变。对于突然转变(直接界面),部件会承受巨大的应力和化学不相容性。相反,连续/渐进的转变可以最大限度地减少这些问题,并改善界面处的机械性能 [3、4]。基于电弧的定向能量沉积(DED-arc),通常称为线材和电弧增材制造(WAAM),是制造 FGM 的一种很有价值的制造技术。使用配备多个独立线材送料器的机器可以轻松进行其生产,从而可以创建在多个方向上具有成分和性能梯度的部件。同时使用两根线材被称为双线和电弧增材制造 (T-WAAM)。尽管如此,在同一熔池中结合两种材料会带来令人困惑的挑战,包括可能形成不良的金属间化合物,这会降低可焊性/可打印性(例如,由于形成热裂纹和高硬度区域)并导致过早失效 [2]。此外,热膨胀系数不匹配、熔化温度差异以及溶解度不足都会导致开裂和脆化 [5]。每根焊丝不同的热物理性质也意味着确保零件无缺陷所需工艺参数存在显著差异。316L 不锈钢与 Inconel 625 的 FGM 用于化工厂、石油天然气和核工业应用。特别是在堆焊管道和阀门中,零件插入两种不同的环境中,需要不同的耐腐蚀和耐磨性(内部接触腐蚀性流体,例如含有高 CO2 和 H2S 的原油,外部接触大气 [6e8])。尽管 Inconel 625 的这些性能更胜一筹,但在结构件的关键区域用不锈钢替代 Inconel 可以降低相关部件成本。两种合金的基质均为单个面心立方 (FCC) 相 (g),主要合金元素为 Fe、Cr 和 Ni。根据工艺和制造策略,可能会出现一些问题,其中热裂纹尤为普遍。Shah 等人 [9] 使用激光定向能量沉积 (L-DED) 分析了工艺参数对 316 不锈钢到 Inconel 718 FGM 制造的影响。作者没有证明由激光诱导裂纹的证据
执行摘要 本报告总结了石油和天然气行业安全仪表系统 (SIS) 常见故障 (CCF) 现场研究的结果。此前,核工业等其他行业也采取了类似的举措,但迄今为止,石油和天然气行业收集的有关 CCF 的现场数据非常有限。CCF 包括导致多个组件故障的事件,在有限的时间间隔内影响一个或多个 SIS。在运营审查期间使用了以下 CCF 定义:同一组件组中由于同一根本原因在指定时间内发生故障的组件/项目。本研究的目的是更深入地了解 CCF 发生的原因和频率。提高对 CCF 的了解对于运营公司以及系统设计人员和集成商来说都很重要,这样才能满足石油和天然气行业 SIS 的高可靠性要求以及挪威石油安全局规定的“足够独立”的要求。项目团队已审查了大约 12,000 份通知,涉及六个不同的安装。根据故障描述和与操作人员的讨论,每个故障都被分为独立故障和从属故障,以确定所有组件故障中由共同原因导致的故障的比例。这项研究的一个重要基础是 beta 因子模型。这是一个广泛使用的 CCF 可靠性模型,引入了希腊字母 β 作为模型参数。在这个模型中,组件 (λ) 的故障率由于共同原因被分为独立部分 (1-β)λ 和从属部分 (βλ)。贝塔系数 (β) 定义为导致共同原因故障的组件故障的比例。研究的主要成果包括: • SIS 主要设备组的通用贝塔系数值 • 用于评估可能的 CCF 原因和防御措施的 CCF 检查表。检查表可用于确定 SIS 的安装特定贝塔系数值。通用贝塔系数值 CCF 事件的数量和新建议的通用贝塔系数值总结如下,适用于 SIS 的主要设备组。“总人口”是所有六个安装中的组件标签数量,N DU 是未自动检测到的危险故障总数,但通常在功能测试或实际需求(DU 故障)期间显示,N DU , CCF 是受 CCF 事件影响的 DU 故障总数。记录的 CCF 事件在各个装置之间差异很大。在某些装置中,某些组件组未观察到 CCF 事件,而在其他装置中观察到过多的 CCF 比例。研究结果表明,运行期间经历的 CCF 比例高于可靠性计算中通常假设的比例。这是一个重要的结果,因为它表明先前对冗余 SIS 的可靠性预测可能过于乐观,并且组件之间的独立性可能低于传统假设。因此,结果应鼓励石油行业在设计和运行过程中更加努力地分析和避免 CCF。定期进行操作审查(参考第 4.1 节),特别关注系统故障和 CCF,可能是在运行期间跟踪此类故障的一种实用方法。