大型真核基因组被包装到核的受限区域中,以保护遗传密码并提供一个专门的环境来读取,复制和修复DNA。基因组在染色质环和自我相互作用域中的物理组织提供了基因组结构的基本结构单位。这些结构排列是复杂的,多层的,高度动态的,并且影响了基因组的不同区域如何相互作用。通过增强剂促进剂相互作用在转录过程中的作用已得到很好的确定。不太了解的是核结构如何影响DNA复制和修复过程中染色质交易的大量交易。在这篇综述中,我们讨论了在细胞周期中如何调节基因组结构,以影响复制起源的定位和DNA双链断裂修复的协调。基因组结构在这些细胞过程中的作用突出了其在保存基因组完整性和预防癌症的关键参与。
本社区资源文件介绍了由 INDEPTH(核域对基因表达和植物性状的影响)COST 行动开发的一系列材料,这些材料通过 INDEPTH 学院提供。最近,人们对表观遗传控制在植物和作物科学中的重要性的理解迅速增长,导致需要共享的高质量资源、标准化协议和开放获取数据存储库。INDEPTH 学院提供一系列大师级教程、标准化协议和教学网络研讨会,以及一个快速发展的存储库,以支持细胞核的成像和空间分析以及用于自动分析的深度学习。这些资源的开发部分是为了应对 COVID-19 大流行,但也受到来自 32 个国家/地区 80 个实验室的约 200 名研究人员的 INDEPTH 社区确定的需求和机会的推动。本社区报告概述了所制作的资源以及它们将如何扩展到 INDEPTH 项目之外,但也旨在鼓励更广泛的社区通过访问这些资源来参与表观遗传学和核结构。
本报告总结了协调研究项目 (CRP) 下开展的工作,该项目名为“核结构抗震性能预测分析方法验证”。该项目由国际原子能机构根据其快堆技术工作组 (TWGFR) 的建议组织实施,于 1996 年至 1999 年间开展。核电站和设施的主要要求之一是确保安全,并在地震等强外部动态载荷下不发生损坏。液态金属冷却快堆 (LMFR) 的设计包括在低压下运行的系统,并包括薄壁和柔性部件。这些系统和部件可能会受到地震区地震的严重影响。因此,国际原子能机构通过其先进反应堆技术开发计划支持成员国将抗震技术应用于 LMFR 的活动。将该技术应用于 LMFR 和其他核电站及相关设施将带来优势,即在存在地震风险的地区可以安全地使用标准设计。该技术还可以提供一种抗震升级核设施的方法。应用于此类关键结构的设计分析需要牢固确立,而 CRP 为评估其可靠性提供了宝贵的工具。来自印度、意大利、日本、韩国、俄罗斯联邦、美国的十个组织
摘要。量子计算为模拟多体核系统开辟了新的可能性。随着多体系统中粒子数量的增加,相关汉密尔顿量的空间大小呈指数增长。在使用传统计算方法对大型系统进行计算时,这带来了挑战。通过使用量子计算机,人们可能能够克服这一困难,这要归功于量子计算机的希尔伯特空间随着量子比特数的增加而呈指数增长。我们的目标是开发能够重现和预测核结构(如能级方案和能级密度)的量子计算算法。作为汉密尔顿量的示例,我们使用 Lipkin-Meshkov-Glick 模型。我们对汉密尔顿量进行了有效的编码,并将其应用到多量子比特系统上,并开发了一种算法,允许使用变分算法确定原子核的全激发光谱,该算法能够在当今量子比特数有限的量子计算机上实现。我们的算法使用哈密顿量的方差 DH 2 E −⟨ H ⟩ 2 作为广泛使用的变分量子特征值求解器 (VQE) 的成本函数。在这项工作中,我们提出了一种基于方差的方法,使用量子计算机和简化量子比特编码方法查找小核系统的激发态光谱。
核物理学的底层理论是由量子规范和物质结合的,它在根本上是重要的,但对于使用古典计算机进行仿真而言,这是巨大的挑战。量子计算为研究和理解核物理学提供了一种变革性的方法。随着量子处理器的快速扩展以及量子算法的进步,用于模拟量子量规场和核物理学的数字量子模拟方法已引起了很多关注。在这篇综述中,我们旨在总结使用量子计算机解决核物理学的最新信息。我们首先讨论量子计算语言中核物理学的表述。特别是,我们回顾了如何在量子计算机上映射和研究量子规范(Abelian和Abelian)及其与物质领域的耦合。然后,我们引入了相关的量子算法,以求解量子系统的静态性能和实时演变,并显示其在核物理学中的广泛问题中的应用,包括模拟晶格规范,求解核素和核结构,量子优势,用于在量子上散射量的量子量,量子量,量子量,量子eLd eld eld eld eldequibilibil dynamilics in nor-equibib and of y-un-equibib and of。最后,给出了未来工作的简短展望。
摘要讨论了激光谐振电离技术在放射性离子束设备上产生的单个带电离子的生产中的应用。结合高效率和元素的选择性的abily是使谐振离子激光离子源(RILIS)成为许多放射性离子束设备的重要组成部分。在CERN,RILIS是Isolde设施中最常用的离子源,每年运营时间为3000小时。对于某些同位素,RILI也可以用作快速有意义的激光光谱工具,前提是光谱分辨率足够高以揭示核结构对原子光谱的影响。这可以研究具有生产率甚至低于每秒1个离子的同位素的核性质,在某些情况下,可以实现异构体选择性离子ization。总结了可用于在放射性离子束设备上实施共振激光离子的解决方案。涵盖了激光要求,离子源条件,选择性,效率和应用等方面。 还将描述在CERN ISOLDE设施实施的用于激光光束运输和控制,可靠性和易于操作的实际解决方案。涵盖了激光要求,离子源条件,选择性,效率和应用等方面。还将描述在CERN ISOLDE设施实施的用于激光光束运输和控制,可靠性和易于操作的实际解决方案。
在所有活细胞中,基因组 DNA 都是通过与专用蛋白质相互作用和/或形成多聚螺旋而压缩的。在细菌中,DNA 压缩是动态实现的,与密集且不断变化的转录活性相协调。H-NS 是一种主要的细菌类核结构蛋白,由于其与 RNA 聚合酶的相互作用而特别受关注。H-NS:DNA 核蛋白丝抑制 RNA 聚合酶的转录起始。然而,H-NS 沉默的基因可以通过来自邻近区域的转录激活这一发现表明,延长的 RNA 聚合酶可以分解 H-NS:DNA 丝。在这项研究中,我们提供了证据表明转录诱导的反沉默不需要转录到达沉默基因;相反,它在远处发挥作用。通过在中间片段内引入 DNA 旋转酶结合位点可抑制反沉默,这表明长距离效应是由转录驱动的正 DNA 超螺旋向沉默基因扩散引起的。我们提出了一个模型,其中 H-NS:DNA 复合物在体内在负超螺旋 DNA 上形成,H-NS 桥接了多面体的两条臂。相邻转录产生的正超螺旋的旋转扩散将导致 H-NS 结合的负超螺旋多面体“展开”,从而破坏 H-NS 桥并释放 H-NS。
肌肉干细胞(MUSC)在骨骼肌再生中起着至关重要的作用,居住在整个再生过程中经历尺寸和机械变化的利基市场中。这项研究调查了MUSC在再生的后期遇到的三维(3D)限制和刚度如何调节其功能,包括干,激活,增殖和分化。我们设计了一个不对称的3D水凝胶双层平台,具有可调的物理限制,以模仿再生的MUSC利基市场。我们的结果表明,增加的3D限制能够保持PAX7表达,减少MUSC激活和增殖,抑制分化,并与较小的核大小和H4K16AC水平降低相关,这表明机械限制调节了核结构和表观遗传调节。与在更狭窄的3D条件下的二维(2D)环境中,无限制的二维(2D)环境中的MUSC表现出更大的核和更高的H4K16AC表达,从而导致逐步激活,扩张和肌源性承诺。这项研究强调了3D机械提示在MUSC命运调节中的重要性,3D限制是对肌原性承诺的机械制动器,为控制肌肉再生过程中MUSC行为的机械性景观机制提供了新的见解。
摘要 尽管在发现新原子核、建模微观原子核结构、核反应堆和恒星核合成方面取得了进展,但我们仍然缺乏系统工具(例如网络方法)来了解 JINA REACLIB 中编译的 7 万多种反应的结构和动力学。为此,我们开发了一个分析框架,通过计算进入和离开任何目标核的中子和质子数,可以很容易地知道哪些反应通常是可能的,哪些是不可能的。具体而言,我们在此组装一个核反应网络,其中节点代表核素,链接代表核素之间的直接反应。有趣的是,核网络的度分布呈现双峰分布,与无标度网络的常见幂律分布和随机网络的泊松分布明显不同。基于 REACLIB 中截面参数化的动力学,我们意外地发现,对于速率低于阈值 λ < e − T γ 的反应,该分布具有普遍性,其中 T 是温度,γ ≈ 1.05。此外,我们发现了三条控制核反应网络结构模式的规则:(i)反应类型由链接选择决定,(ii)在核素 Z vs N 的二维网格上,反应核素之间的网络距离很短,(iii)每个节点的入度和出度都彼此接近。通过结合这三个规则,无论核素图如何扩展,我们的模型都可以普遍揭示隐藏在大型密集核反应网络中的底层核反应模式。它使我们能够预测代表尚未发现的可能的新核反应的缺失环节。
了解物种间染色质构象的进化对于阐明基因组的结构和可塑性至关重要。线性远距离基因座的非随机相互作用以物种特异性模式调节基因功能,影响基因组功能、进化,并最终影响物种形成。然而,来自非模式生物的数据很少。为了捕捉脊椎动物染色质构象的宏观进化多样性,我们通过 Illumina 测序、染色体构象捕获和 RNA 测序为两种隐颈龟 (cryptodiran,藏颈龟) 生成从头基因组组装:Apalone spinifera (ZZ/ZW,2 n = 66) 和 Staurotypus triporcatus (XX/XY,2 n = 54)。除了在线性基因组中检测到的融合/裂变事件外,我们还检测到龟类的三维 (3D) 染色质结构与其他羊膜动物存在差异。也就是说,全基因组比较揭示了龟类染色体重排的不同趋势:(1)鳖科(Trionychidae)的基因组改组率较低,而鸡(可能是龟类的祖先)与核型高度保守;(2)动胸龟科(Kinosternidae)和翠龟科(Emydidae)的融合/裂变率中等。此外,我们还发现了一种染色体折叠模式,这种模式使以前在龟类中未检测到的“着丝粒 - 端粒相互作用”成为可能。“着丝粒 - 端粒相互作用”(本文发现)加上“着丝粒聚集”(之前在蜥蜴类中报道过)的组合龟类模式对于羊膜动物来说是新颖的,它反驳了以前关于羊膜动物 3D 染色质结构的假设。我们假设,在龟类中发现的不同模式起源于羊膜动物祖先状态,该状态由核结构定义,微染色体之间存在广泛的关联,这些关联在线性基因组改组后得以保留。