如今,围绕库仑势垒对聚变反应和准弹性散射的研究引起了广泛关注。通过这类重离子碰撞可以研究核-核相互作用势和核结构性质 [ 1 ]。碰撞伙伴的核结构性质可显著影响亚势垒域中的聚变产额。聚变对中不同内在自由度的参与降低了参与者之间的聚变势垒,并导致与一维势垒穿透模型 (BPM) 的预测相比大得多的聚变结果。文献中已充分证实,聚变伙伴的相对运动和内在通道之间的耦合会导致单个聚变势垒分裂为不同高度和重量的势垒分布。这被称为聚变势垒分布,聚变势垒分布的形状对聚变过程中涉及的耦合类型非常敏感。聚变势垒分布的概念由 Rowley 等人 [2] 提出,可通过对 𝐸 𝑐.𝑚. 𝜎 𝑓 对质心能量取二阶导数获得。此外,大角度准弹性散射函数可以产生与聚变势垒分布非常相似的势垒分布,并且聚变势垒分布和准弹性势垒分布的形状基本相同。准弹性势垒分布可通过对 𝐸 𝑐.𝑚. 的准弹性散射截面取一阶导数获得。众所周知,聚变过程可以用穿透概率来解释,基于量子力学隧穿,而准弹性散射与反射概率有关。重离子准
主要因为其优异的耐腐蚀性能而广泛应用于工业领域[1–5]。304 不锈钢是一种奥氏体钢,广泛用于化工厂管道和许多其他可能承受循环载荷的应用。疲劳寿命和裂纹起始位置的预测是工厂结构设计的重要方面。疲劳失效通常是由小于晶粒尺寸的微裂纹的产生引起的,然后微缺陷生长并融合为主要裂纹,接着是主要宏观裂纹的稳定扩展,最后是结构不稳定或完全断裂[6]。奥氏体不锈钢因其优异的力学性能而被广泛用作反应堆冷却剂管道、阀体和容器内部构件的核结构材料[7]。
重离子碰撞(HIC)中中子与质子的椭圆流比是限制核对称能的重要探针之一,但高精度测量中子流对实验技术来说是一个巨大的挑战。本文研究了质子的椭圆流,发现v 2 符号由负变为正的速度对对称能的密度依赖性很敏感。通过将现有的FOPI质子流实验数据与超相对论量子分子动力学(UrQMD)模型的计算结果进行比较,提取出核对称能的斜率参数为L 0 = 43±20 MeV,置信度为95%。这与最近许多关于核结构性质的研究结果一致,也与最近的ASY-EOS实验结果部分重叠。
如今,通过各种高通量技术的开发,可以很好地分析真核基因组的线性维度,从而可以进行基因组范围的方法。因此,他们的序列几乎没有谜,更容易质疑他们的进化和越来越多的研究旨在绘制其动态表观基因症状。这一进展引起了新的挑战,即使基因组重新恢复其三维核框架,以检查基因组的主要功能与相互相间细胞核的结构之间的相互作用,从而破译了核结构与功能之间的关系。因此,对核室有新的兴趣,其中一些描述了大约两个世纪前和3D核结构。因此,在动物和植物细胞中都在积极研究了相间细胞核的特殊复杂性,其有序结构以及该细胞器的动力学。已经了解了细胞核的组成和精细结构,以及其各种功能隔室的形成机理和动力学的机理。对染色质和其他核室之间的结构和功能相互作用有了更好的了解。这些研究伴随着特定的3D方法和工具的开发,例如3D成像和建模以及捕获染色体构象的方法。然而,关于植物中的染色质动力学还有很多尚待了解。已经发表了许多关于核组织各个方面的评论(De Wit and de Laat 2012; Dekker等,2013; Delgado等,2010; Dion and Gasser 2013; Rajapakse and Groudine 2011; Taddei and Gasser 2012; Towbin等,2012; Towbin等人,2013年)。在这篇综述中,我们总结了我们当前对模型植物拟南芥中相间核核区室的知识,并特别强调了异染色质。的确,这个隔室是高度塑料的,表现出大规模的重组并有助于基因组组织,而在细胞核尺度上的白染色质动力学几乎没有研究。我们还讨论了3D建模和定量技术,用于分析相互核的体系结构,这些核的结构仍处于thaliana的起步阶段。
需要确定生物组织切片中的主要(C,H,N和O)含量,这是建立了定量离轴扫描传输离子显微镜(OA-stim)的形式主义。这可以与同时进行弹性反向散射光谱(EB)一起使用,以提供定量的主要元素组成和厚度信息。作为工作的一部分,实施了具有一个自由参数的经验预测指标。预测变量值与高精度文献数据非常紧密。对于2 MeV P – 12 C的弹性散射在正角≤45◦使用插值程序来确定与Rutherford Cross截面的相对偏差确定为≤6。4%。插值基于库仑场,角动量量子数和核结构依赖性核穿透因子。最后,讨论了同时OA-stim和EBS数据的定量组合。
同位素 229 Th 是已知的唯一一种在几电子伏特能量范围内具有激发态 229m Th 的原子核,这是原子价壳层中电子的典型跃迁能量,但比常见的核激发能低四个数量级。人们提出了许多利用这种独特核系统的应用,该系统可通过光学方法实现。其中最有希望的是一种性能优于现有原子计时器的高精度核钟。我们在此介绍 229m Th 2+ 超精细结构的激光光谱研究,得出基本核特性的值,即磁偶极矩和电四极矩以及核电荷半径。继最近直接检测到这种长期寻找的异构体之后,我们现在对其核结构进行了详细的了解,并提出了一种非破坏性光学检测方法。
在过去的几十年中,人们已经清楚地认识到表观遗传异常可能是癌症的标志之一。例如,组蛋白的翻译后修饰可能通过调节基因转录、染色质重塑和核结构在癌症的发展和进展中发挥关键作用。组蛋白乙酰化是一种研究充分的翻译后组蛋白修饰,受组蛋白乙酰转移酶 (HAT) 和组蛋白去乙酰化酶 (HDAC) 的相反活性控制。通过去除乙酰基,HDAC 可逆转染色质乙酰化并改变致癌基因和肿瘤抑制基因的转录。此外,HDAC 可去乙酰化多种非组蛋白细胞底物,这些底物控制着包括癌症发生和进展在内的多种生物过程。本综述将讨论 HDAC 在癌症中的作用以及 HDAC 抑制剂 (HDACi) 作为癌症治疗的新兴药物的治疗潜力。
摘要:利用 (3+1)-D 流体动力学模型 CLVisc,我们研究了 200 GeV 下 Au+Au、Ru+Ru 和 Zr+Zr 碰撞中产生的轻强子的定向流 ( )。系统地研究了倾斜能量密度、压力梯度和沿 x 方向的径向流的演变。结果表明,初始火球的逆时针倾斜是最终轻强子定向流的重要来源。对 RHIC 中心和中中心 Au+Au 和等量异位素碰撞中的轻强子定向流进行了很好的描述。我们的数值结果显示,在不同碰撞系统中,轻强子具有明显的系统尺寸依赖性。我们进一步研究了原子核结构对定向流的影响,发现对于轻强子来说,对具有四极子变形的原子核来说,定向流不敏感。
物理学硕士课程教学大纲 3 PHY 411:数学方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 PHY 421:经典电动力学. . . . . . . . . . . . . . . . . . . . . 10 PHY 422:量子力学 II. . . . . . . . . . . . . . . . . . . . . 11 PHY 423:统计力学. . . . . . . . . . . . . . . . . . . . 12 PHY 511:原子、分子和激光物理学. . . . . . . . . . . . . . . 14 PHY 512:固体物理学. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PHY 513:核物理学和粒子物理学. . . . . . . . . . . . . . . . . . . . . . . 18 PHY 521:高级 I . . . . . . . . . . . . . . . . . . . . . . . . 19 凝聚态物理学 I . . . . . . . . . . . . . . . . . . . . 19 原子核结构. . . . . . . . . . . . . . . . . . . . . . . . . . 21 量子电子学. . . . . . . . . . . . . . . . . . . . . . 22 量子场论. . . . . . . . . . . . . . . . . . . . 23 高等统计力学及其应用. . . . . . . . . . . . 24 PHY 522:高级 II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 凝聚态物理学 II . . . . . . . . . . . . . . . . . . . . . 26 激光物理学和量子光学 . . . . . . . . . . . . . . . . . . . 28 材料物理学 . . . . . . . . . . . . . . . . . . . . . 29 核反应和核天体物理学 . . . . . . . . . . . . . . . 31 粒子物理学. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 广义相对论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 量子计算和量子信息 . ...