这项研究得到了日本科学技术振兴机构 (JST) 战略基础研究促进计划 CREST“用于长 DNA 合成和自主人工细胞创建的人工细胞反应器系统”研究领域 (编号 JPMJCR19S4)、GteX“大规模并行蛋白质打印机系统的开发”研究领域 (编号 JPMJGX23B1)、ASPIRE“日英合作开发人工光合细胞系统”(编号 JPMJAP24B5) 和科学研究补助金“Kikagaku S”(编号 JP19H05624) 的支持。 术语表(注1) 真核生物:具有细胞核并被核膜包围,且含有线粒体等细胞器的生物的统称。它们包括动物、植物和真菌,具有比原核生物更复杂的细胞结构。 (注2)内在无序蛋白质是在生理条件下不能形成三维结构的蛋白质,与酶等折叠成特定的三维结构才能发挥功能的蛋白质不同。分子间多样化的相互作用网络推动液-液相分离,形成称为凝聚层的液滴。 (注3)液-液相分离:均质液体混合物自发分离成两个具有不同成分的液相的现象。单一聚合物(如天然存在的变性蛋白质)可发生相分离,形成致密相和稀相,或者两种不同组成的致密相(如葡聚糖和聚乙二醇)。 (注4)肽标签:一种用于连接特定蛋白质的短氨基酸序列。通过将DNA序列遗传整合到蛋白质中,可以很容易地将其添加到蛋白质中。本研究中使用的肽标签具有拉链式结构,使得它们能够相互互锁并进行特定结合。另一方面,由于它几乎不与其他分子或蛋白质结合,因此可以利用这一特性选择性地将特定蛋白质结合在一起。在该系统中,一个肽标签附着在IDP上,另一个肽标签附着在要掺入IDP相的蛋白质上。 (注5)分子信标:用于检测特定DNA或RNA序列的核酸探针,具有包含荧光染料和猝灭剂的环状结构。在没有目标序列的情况下,荧光就不会出现,但一旦与序列结合,分子的形状就会发生变化,发出荧光并变得可检测。这可以实时确认样本中特定基因或 RNA 的存在。
细胞基因组不断受到外源性和内源性 DNA 损伤剂的挑战,无法修复这种损伤会导致基因组不稳定性和肿瘤形成 ( Lavin 等人,2005 年;Jackson 和 Bartek,2009 年)。基因组不稳定是癌症的已知特征,随着肿瘤形成的进展,基因优化会导致 DNA 修复途径失调,从而选择出基因组不稳定性和适应性增强的癌细胞。重要的是,这种肿瘤演化通常会导致通过失活替代途径来依赖单一 DNA 修复途径生存,这突显了癌细胞的一个关键分子弱点 ( Jeggo 等人,2016 年)。利用下一代精准/个性化医疗药物,精准靶向癌细胞中剩余或失调的 DNA 修复途径,充分利用这一弱点,提供针对个体特定肿瘤特征的治疗方法( Aziz 等人,2012 年;Kelley 等人,2014 年;Jekimovs 等人,2014 年;Biau 等人,2019 年;Lavin 和 Yeo,2020 年)。本研究主题探讨了癌症治疗:靶向 DNA 修复途径,包含十篇文章,反映肿瘤使用的 DNA 修复途径的广度和复杂性,并为它们在下一代癌症疗法中的潜在利用提供关键见解。本主题包括对癌症发展或存活至关重要的关键 DNA 修复蛋白和途径的评论和原创研究文章,强调了它们对未来靶向治疗的重要性。本主题重点介绍了重要的评论,以及 Ren 等人的手稿。讨论了染色体凝聚调节器 1 (RCC1) 的结构,该蛋白质参与细胞周期的调节、DNA 损伤和癌症的发展。RCC1 在癌细胞中过表达,并讨论了 RCC1 在纺锤体形成、核膜形成和核运输中的作用。作者强调了 RCC1 在肿瘤发生中的作用,并进一步讨论了其作为肿瘤生物标志物的潜力(Ren 等人)。综述染色体凝聚调节器 2 调节细胞周期进程、肿瘤发生和治疗耐药性,强调了 RCC2 在不同癌症的肿瘤发展中的作用及其在对当前疗法的耐药性中的作用。Guo 等人证明 RCC2 在许多癌症的致癌作用中发挥作用,包括结直肠癌、肺癌、乳腺癌和卵巢癌。作者讨论了 RCC2 在 DNA 修复过程中的新兴作用。作者认为,RCC2 与众多信号通路的相互作用会导致患者产生治疗耐药性和不良癌症预后,凸显了其作为癌症生物标志物和未来治疗靶点的潜力。Sobanski 等人的综述《细胞代谢和 DNA 修复通路:对癌症治疗的影响》重点关注 DNA 修复对细胞代谢的依赖性。作者强调了 DNA 修复和细胞代谢在肿瘤发展和进展中的相互作用,并讨论了下一代潜在新疗法将如何同时针对这两个过程(Sobanski 等人)。Fernandez 等人在其综述《表观遗传学》中全面回顾了目前正在临床试验或 FDA 批准用于癌症治疗临床的表观遗传疗法
细胞基因组不断受到外源性和内源性 DNA 损伤剂的挑战,无法修复这种损伤会导致基因组不稳定性和肿瘤形成 ( Lavin 等人,2005 年;Jackson 和 Bartek,2009 年)。基因组不稳定是癌症的已知特征,随着肿瘤形成的进展,基因优化会导致 DNA 修复途径失调,从而选择出基因组不稳定性和适应性增强的癌细胞。重要的是,这种肿瘤演化通常会导致通过失活替代途径来依赖单一 DNA 修复途径生存,这突显了癌细胞的一个关键分子弱点 ( Jeggo 等人,2016 年)。利用下一代精准/个性化医疗药物,精准靶向癌细胞中剩余或失调的 DNA 修复途径,充分利用这一弱点,提供针对个体特定肿瘤特征的治疗方法( Aziz 等人,2012 年;Kelley 等人,2014 年;Jekimovs 等人,2014 年;Biau 等人,2019 年;Lavin 和 Yeo,2020 年)。本研究主题探讨了癌症治疗:靶向 DNA 修复途径,包含十篇文章,反映肿瘤使用的 DNA 修复途径的广度和复杂性,并为它们在下一代癌症疗法中的潜在利用提供关键见解。本主题包括对癌症发展或存活至关重要的关键 DNA 修复蛋白和途径的评论和原创研究文章,强调了它们对未来靶向治疗的重要性。本主题重点介绍了重要的评论,以及 Ren 等人的手稿。讨论了染色体凝聚调节器 1 (RCC1) 的结构,该蛋白质参与细胞周期的调节、DNA 损伤和癌症的发展。RCC1 在癌细胞中过表达,并讨论了 RCC1 在纺锤体形成、核膜形成和核运输中的作用。作者强调了 RCC1 在肿瘤发生中的作用,并进一步讨论了其作为肿瘤生物标志物的潜力(Ren 等人)。综述染色体凝聚调节器 2 调节细胞周期进程、肿瘤发生和治疗耐药性,强调了 RCC2 在不同癌症的肿瘤发展中的作用及其在对当前疗法的耐药性中的作用。Guo 等人证明 RCC2 在许多癌症的致癌作用中发挥作用,包括结直肠癌、肺癌、乳腺癌和卵巢癌。作者讨论了 RCC2 在 DNA 修复过程中的新兴作用。作者认为,RCC2 与众多信号通路的相互作用会导致患者产生治疗耐药性和不良癌症预后,凸显了其作为癌症生物标志物和未来治疗靶点的潜力。Sobanski 等人的综述《细胞代谢和 DNA 修复通路:对癌症治疗的影响》重点关注 DNA 修复对细胞代谢的依赖性。作者强调了 DNA 修复和细胞代谢在肿瘤发展和进展中的相互作用,并讨论了下一代潜在新疗法将如何同时针对这两个过程(Sobanski 等人)。Fernandez 等人在其综述《表观遗传学》中全面回顾了目前正在临床试验或 FDA 批准用于癌症治疗临床的表观遗传疗法
领域主题:生物科学和生物技术 姓名:CAPELLA、MATÍAS 参考号:RYC2023-044783-I 电子邮箱:mcapella@ial.unl.edu.ar 标题:分析调节重复序列以维持植物基因组稳定性的因素 记忆摘要:我的科学之旅始于阿根廷圣菲的 Instituto de Agrobiotecnología del Litoral,指导老师是 Raquel Chan 教授。在完成硕士和博士论文后,我的研究主要集中在了解特定植物 HD-Zip 转录因子在拟南芥和向日葵中的作用。值得注意的是,我发现了对转录活性很重要的关键蛋白质区域(Capella 等人,2014 Plant Cell Rep)。此外,我的研究还强调了 AtHB1 在调节生长相关蛋白表达和促进下胚轴细胞伸长方面的作用(Capella 等人,2015 New Phytol)。在此期间,我还参与了 3 篇研究论文(2 篇 BMC Plant Biol 和 1 篇 J Exp Bot)和 2 部章节书籍(1 部作为第一作者)。在生物化学与生物科学学院期间,我协助分子和细胞生物学系完成了几项任务。丰富的经验使我掌握了一套涵盖生化、分子和生理方法的多功能技能。这些技能最初专注于植物生物学,现已在不同的科学领域展现出其价值。在转向分子细胞生物学博士后研究后,我加入了慕尼黑马克斯普朗克生物化学研究所 Stefan Jentsch 教授的实验室。在那里,我提高了在酵母遗传学、基于质谱的蛋白质组学和蛋白质生物化学方面的技能。我研究了双链断裂后重复序列的核膜监视和染色质动力学,这些项目最终以第一作者和通讯作者的身份发表了两篇论文(Capella 等人,2020 年 J Cell Sci;Capella 等人,2021 年 Nature Commun)。在 Jentsch 教授去世后,我加入了慕尼黑生物医学中心 Sigurd Braun 博士的实验室。这一阶段让我能够将我的工作扩展到模型生物裂殖酵母,参与高通量遗传筛选,并获得 RNA 测序技术的专业知识。通过我在 Braun 实验室的博士后研究,我参与了一个项目,我们展示了 Lem2 在 RNA 监视中的作用(Martin Caballero 等人,2022 年 Nat Struc Mol Biol)。此外,我还参与并协助发表了 2 篇研究论文(1 篇 EMBO Rep 和 1 篇 Microbial Cell)、2 篇 News & Views(1 篇 Nat Struc Mol Biol 和 1 篇 Dev Cell,均为第一作者),并与奥地利的 Frederic Berger 教授合作通过合成生物学探索植物组蛋白变体(1 篇 Curr Biol 和 1 篇 PLoS Genet)。此外,我们正处于完成另一份手稿的最后阶段(Muhammad 等人,正在准备中)。尽管身在国外,我与我在阿根廷的前导师合作,并继续指导一名硕士生,最终以共同第一作者的身份发表了 2 篇论文(1 篇 Plant Physiol 和 1 篇 J Exp Bot),以通讯作者的身份发表了 1 篇论文(1 篇 Plant Cell Physiol),以第三作者的身份发表了 1 篇论文(1 篇 Plant Sci)。回到阿根廷后,我致力于建立自己的研究小组,重点研究确定调节植物重复序列稳定性的分子因素——这是一个尚未被探索的领域。为了实现这一目标,我目前正在指导两名博士生和一名研究生。最后,我最近成功获得了两笔资助,以资助我的独立项目,这是我研究历程中的一个关键时刻。