a b s t r a c t燃气管道内的黑粉末沉积物的积累会导致各种影响管道操作和完整性的问题。黑色粉末的存在有可能污染气体产品,促进管道内部磨损增加并导致堵塞降低流量。从安全的角度来看,黑色粉末堆积可能会引起健康和环境问题。先前的研究已经使用XRF,XRD,TG-DTA和FTIR等技术分析了管道中的黑粉末沉积物的组成。他们的发现表明氧化铁(Fe 3 O 4)是黑粉的主要成分。本研究在基本条件下开发了一种新型的流量注射化学发光(FI-CL)方法,用于确定黑粉末沉积中的Fe 3 O 4浓度,因为Fe 3 O 4可以催化化学发光反应。与传统的分析技术相比,所提出的基于CL的流动注入方法的特征是良好的选择性,简单性,低成本,而无需食用其他材料。通过CL光谱研究了CL机制,揭示了Fe 3 O 4在增强Luminol-NaOH-H 2 O 2反应中的参与。优化了FI-CL系统的实验条件。在最佳参数下,相对CL强度在0.5-100 µg ml -1的范围内显示出与Fe 3 O 4浓度的线性关系,检测极限为0.47 µg mL -1,相对标准偏差(%RSD)为2.0%,为2.0%,为5.0 µg mL -1。结果与另一种技术非常吻合。该方法成功地应用于从气管管道中提取的黑粉样品,显示92.59-107.69%的回收率,精度为0.8-3.1%。所提出的FI-CL方法为管道沉积和腐蚀产物中的氧化铁定量提供了快速,方便且具有成本效益的方法。
摘要:源自工业,农业和城市来源的酚类化合物可以渗入流水,对水生生物,生物多样性以及损害饮用水质量的不利影响,对人类构成潜在的健康危害。因此,监测和减轻流水中酚类化合物的存在对于保护生态系统的影响和保护公共卫生至关重要。这项研究探讨了基于用石墨烯(GPH)(GPH),Poly(3,4-乙基二苯乙烯)(PEDOT)(PEDOT)和酪氨酸酶(TY)修饰的屏幕打印电极(SPE)的创新传感器的开发和性能,设计用于水分析,专注于制造过程和所获得的耗载结果。拟议的生物传感器(SPE/GPH/PEDOT/TY)旨在达到高度的精度和灵敏度,并允许有效的分析回收率。特别注意修改元素组成的制造过程和优化。这项研究强调了生物传感器作为水分析的有效且可靠的解决方案的潜力。用石墨烯,PEDOT聚合物的合成和电聚合沉积和酪氨酸酶固定的修饰有助于获得高性能和稳健的生物传感器,从而提出了监测水生环境质量的有希望的观点。生物传感器的灵敏度增强,可促进河水样品中的检测和定量。分析恢复也是一个重要方面,生物传感器提出一致且可重复的结果。关于电分析实验结果,使用该生物传感器获得的检测极限(LOD)对于所有酚类化合物(8.63×10-10-10-10-10 m for Catechol,7.72×10-10 m均为3-甲氧基毒素的7.72×10-10 m,对于4-甲基氧气的3--氧化氧气和9.56×10 m的能力,可用于4-甲基元素的均匀分数,适合4-甲基元素的特征,均匀均匀跟踪复合参数。此功能可显着提高生物传感器在实际应用中的可靠性和实用性,使其适合监测工业或河水。
摘要:大肠癌是全球癌症死亡的第三大最常见的恶性肿瘤,也是第二个主要原因。多项研究已将患者血清中癌细胞的抗原水平与疾病预后不良联系在一起。因此,检测低水平的癌症抗原的能力在较早的疾病诊断,评估和复发监测中应用。现有的癌症抗原检测方法通常需要多种试剂,训练有素的操作员或复杂的程序。一种减轻这些问题的方法是横向流量测定,这是一个基于纸张的平台,允许在复杂混合物中检测和量化目标分析物。测试很快,是护理点,拥有较长的保质期,并且可以在环境条件下存储,使其非常适合在各种设置中使用。虽然侧向流程通常使用球形金纳米颗粒来产生经典的红色信号,但最近的文献表明,球形的替代形态可以提高检测的极限。在这项工作中,我们报告了替代金纳米颗粒形态的应用,金纳米形状(长度约为35 nm)和金纳米酮(直径约为90 nm),用于癌甲型抗原的横向流量测定法。在比较测定中,与市售的球形金纳米颗粒相比,对于相同的抗体载荷和总金含量而言,金纳米酮的检测极限约为2倍,而每种测试中金纳米酮的数量〜3.2×x降低。在全面优化的测试中,使用金纳米酮获得了14.4 pg/mL的限制,比以前报道的基于金纳米粒子基于金纳米粒子的癌细胞抗原抗原横向流动测定法相比有24倍改善。关键字:黄金,纳米颗粒,侧流测定,癌症,生物标志物,等级纳米颗粒,定量,癌症抗原
使用GC-ECD进行了修改的Quechers方法,以确定pyraclostrobin,difenoconazole,dimethomorph和Azoxystrobin的多重残基,并通过GC-FPD(与S滤波器)间接确定MANEB,MANCOZEB和MANCOZEB和PROPINEB的总残留物(具有S滤波器)。同时,根据良好的农业实践(GAP)进行了现场试验,以研究其在广西省农业气候和农作物系统下残留降解的特征。每个目标峰的分离效应良好,线性范围为0.01 - 5 mg l 1,检测极限(LOD)为0.003 - 0.015 mg kg 1,量化量(LOQ)的限制为0.01 - 0.01 - 0.05 mg kg kg 1。蔬菜西红柿和樱桃番茄的平均回收范围分别为70.5 - 120.0%和70.8 - 119.8%,相对标准偏差(RSD)小于7.1%。对植物和樱桃番茄中七种杀菌剂的现场试验表明,二硫代氨基酸杀菌剂的半衰期(t 1/2)(t 1/2)(Metiram,Mancozeb和prepineb和PresineB)定义为总残留物,确定为CS 2),吡咯蛋白,二核蛋白酶,二核疫苗,以及5. difenocors,dimethobsy of 5 12.7 - 17.8,7.6 - 7.9,6.6 - 6.9和6.3 - 6.6 d分别为蔬菜西红柿。樱桃番茄的范围分别为4.3 - 4.5,10.8 - 11.8,6.7 - 7.0,5.4 - 5.5和5.9 - 6.2 d。因此,樱桃番茄可以被视为西红柿的代表性品种,以实现剩余的外推,以建立西红柿中杀真菌剂的最大残留限量(MRL)值并进行市场监测。结合最终的残基和市场监测结果,结果表明,樱桃番茄的末期残留物,初始沉积物和七种杀真菌剂的最大残留物比蔬菜西红柿高,可以在从三个市场购买的樱桃番茄中检测到这七种农药。
摘要:生物传感器充当复杂的设备,将生化反应转换为电信号。当代强调具有精致灵敏度和选择性的生物传感器设备,由于其广泛的功能能力至关重要。然而,一个重大的挑战在于生物传感器对生物分子的结合亲和力,需要对相互作用进行熟练的转换和扩增到各种信号方式中,例如电气,光学,重力和电化学输出。克服与敏感性,检测极限,响应时间,可重复性和稳定性相关的挑战对于有效的生物传感器创造至关重要。任何生物传感器的制造的中心方面都集中于在分析物电极之间形成一个有效的接口,从而显着影响整体生物传感器质量。聚合物和大分子系统因其独特的特性和多功能应用而受到青睐。可以通过结合纳米颗粒或碳质部分来提高这些系统的性质和电导率。混合复合材料具有独特的属性组合,例如高级灵敏度,选择性,热稳定性,机械灵活性,生物相容性和可调电性能,并成为了生物传感器应用的有希望的候选者。此外,这种方法增强了制造生物传感器的电化学响应,信号扩增和稳定性,从而有助于其有效性。及其杂种,特别关注生物传感器的信号扩增。这篇综述主要探讨了使用大环和大分子共轭系统的最新进展,例如邻苯二甲胺,卟啉,聚合物等。它全面涵盖了合成策略,性能,工作机制,以及这些系统检测葡萄糖,过氧化氢,尿酸,抗坏血酸,多巴胺,胆固醇,氨基酸和癌细胞等生物分子的潜力。此外,本综述深入研究了所取得的进展,阐明了负责信号扩增的机制。该结论解决了生物传感器应用中基于大分子的杂种的挑战和未来方向,从而简要概述了这个不断发展的领域。叙事强调了生物传感器技术进步的重要性,这说明了智能设计和材料增强在改善各个领域性能中的作用。
Monkeypox病毒(MPXV)是一种包裹的双链DNA病毒,属于poxviridae,condopoxvirinae和Orthopoxvirus属(Hraib等,2022; Gong等,2022)。MPXV形成刚果盆地进化枝(进化枝I)和西非进化枝(进化枝II)(Durski等,2018)。此外,进化枝II由两个子映组成,即进化枝IIA和进化枝IIB。在全球爆发中的2022 MPXV分离株在系统发育中属于进化枝IIB,这导致了第一个广泛的人类到人类传播(WHO,2022年)。迄今为止,MPXV已扩散到全球103个国家和地区。2022年7月23日,世界卫生组织宣布蒙基托克斯(MPOX)爆发国际关注的公共卫生紧急情况(WHO,2022; Peng等,2023)。随着全球感染病例的越来越多,开发了一种快速检测工具,以提高地方性国家和地区的监视和检测能力,这是很大的重要性。检测对于防止病毒的扩散至关重要。先前的研究发现,由于MPXV和天花病毒之间存在交叉反应性,因此无法通过抗体测试完全区分正托病毒成员(Hughes等,2014)。和抗体的产生具有一定的延迟,这不利于早期疾病的快速诊断。基于此,我们建立了一个核酸Viusal测定面板,用于快速识别和检测MPXV进化枝I。与其他诊断方法相比,实时PCR具有高量吞吐量和提高灵敏度的功能。WHO推荐的几种PCR分析的检测极限范围为3.5至40.4副本,可以通过多个实时PCR区分正托细胞病毒(Maksyutov等,2016; Durski等,2018)。,这些测定的检测期超过90分钟,
摘要:本文的目的是开发一种确定药剂师本地可用片剂对乙酰氨基酚的方法。我们使用了1220 II II LC Agilent Technologies的II LC系统,该技术由带有DeGasser,可变波长检测器的梯度泵组成,Eclipse Plus C-18 RP列的尺寸为4.6×250mm,5μm。将甲醇 - 水的混合物(30:70 v/v)用作流速为1.0 ml min -1的流动相。在流动阶段不使用缓冲液的情况下实现对乙酰氨基酚的分离。将检测器设置为243 nm的范围。该方法在1-50 µg/ml的范围内线性,相关系数为0.9998。发现扑热息痛的平均保留时间为4.48±0.03分钟。扑热息痛的检测极限和定量极限为0.857 µg/ml和2.597 µg/ml。以相对标准偏差百分比表示的日内和日期精确度低于2%。发现剂量形式的扑热息痛的平均回收率在96.0-102.4%的范围内。该方法可用于验证含有无缓冲液的对乙酰氨基酚的片剂剂型。提出的药物定量方法是经济,准确且快速引入的 - 对乙酰氨基酚也称为扑热息痛,它是PK A 9.38的P-氨基酚衍生物。它被用作镇痛药和抗热药。它用作止痛药和减少发烧,通常可作为片剂剂型。它是全球最常用的药物。,到2021年,他们在印度的Covid Wave期间触及了924千万卢比。2020年3月14日,法国的卫生部长奥利弗·韦兰(Oliver Veran)发推文说,患有199症状的人避免使用布洛芬并使用扑热息痛,导致对扑热息痛药的购买量不成比例。[1]在2019年,对扑热息痛类别的所有品牌的销售额近53亿卢比。DOLO 650毫克成为Covid -19大流行期间品牌最多的平板电脑。由于过量的扑热息痛,还报道了各种副作用。世界卫生组织(WHO)“伪造”(可能是对原始
纳米尺度的材料表面和界面已成为跨学科研究的引人入胜的主题,因为过去20年中许多有希望的应用。高度复杂的技术和新颖的材料家族已经出现了爆炸性的增长和令人信服的催化功能(Jiang等,2021),能源(Janek and Zeier,2016年),环境科学,环境科学(Kartal,2010年),生物医学,生物医学(Zhang et al。。在观察到的材料表演背后发展理论对于该跨学科领域的可持续成功以及成功实施新材料和过程中的下一代高级材料也至关重要。在本期特刊中,我们介绍了纳米级内材料表面和接口的结构,属性和技术应用的研究。该集合专用于跨学科的研究论文,将材料科学,生物学科学和化学的知识和实践整合到关键应用中。本期特刊中包含了两篇研究论文和三个评论,该论文为读者提供了纳米级材料表面和接口的理论和技术的选定案例,可以在各个方面有助于材料化学的进步。第一本研究文章由捷克共和国Palacký大学Olomouc的Michal Otyepka小组撰写,重点介绍了材料表面和界面的纳米结构。合成的石墨烯铁碳化物杂种具有纳米级孔径的分层结构。Chenxuan Wang的小组,来自这种新颖的结构导致令人着迷的性能,并在抗坏血酸内检测多巴胺时具有令人满意的检测极限。这表明材料表面和接口上的纳米结构对于高级材料的出色性能至关重要。第二篇研究文章由北京化学技术大学的成本HE组撰写,专注于材料表面和界面的技术应用。通过尖端的单分子力光谱观察到二氧化硅结合肽SB7和玻璃表面之间的相互作用力,并且通过分子动力学模拟揭示了以下理论。本研究表明,适当的技术的选择是揭示纳米级材料表面和界面的奥秘,从而区分新材料的性能。三篇评论文章强调了材料科学,与生物相关的科学和化学的结合,并在表面和生物医学应用的界面上结合在一起。
在自由行动或野生动物中对传染病的监测已在COVID-19发作之后在许多栖息地国家进行了广泛进行。泰国位于长尾猕猴(Macaca fascicularis; MF)的分布范围的中心,其中动物既经常人类接触,又有人类结核病的高患病率。用于大规模检测结核分枝杆菌复合物(MTBC)的使用为6110-MF中的pcr,使用口服(通过绳索诱饵)和粪便(直接擦拭新鲜粪便)收集标本。首先,MTBC-IS 6110被限制的PCR在非侵入性收集的标本中得到了验证,其特异性和陈述性,然后与24个圈养的MTBC诱发的MTBC诱导的MF中的口腔和直肠拭子相比。验证后,将这些方法应用于在先前报道的MTBC感染人群中的四个棚屋MTBC(MTBC)患病率的调查。总共收集了173个诱饵绳标本和204个新鲜排定的排泄物。IS 6110 -PCR技术的检测极限为10 fg/μL,181 bp PCR扩增子与MTB H37RV基因组序列显示100%序列相似性。在被俘虏的可疑MF中的侵入性和非侵入性收集的标本之间检测揭示了两种类型的口服样本之间存在显着相关性(口腔拭子和诱饵的绳索; n = 24,r 2 = 1,r 2 = 1,p-value <0.001),但较高的新鲜伪造群体比MTCRES shand Swabs shews swabs。揭示了两种类型的口服样本之间存在显着相关性(口腔拭子和诱饵的绳索; n = 24,r 2 = 1,r 2 = 1,p-value <0.001),但较高的新鲜伪造群体比MTCRES shand Swabs shews swabs。此外,在新鲜的粪便中,MTBCS阳性自由放大的MF的比例明显高于诱饵绳(5.20%; 95%CI; 95%; 95%; 95%; 4.9-12.7%)的比例。该结果表明,通过诱饵绳索和粪便采样通过排除排泄物拭子可以用作自由态非人类灵长类动物中MTBCS检测的辅助标本。
摘要。对参与物质的化学组成(PM)的了解对于理解其源分布,确定有毒元素的潜在健康影响以及发展有效的空气污染策略至关重要。传统方法用于分析PM组合的方法,例如在过滤器底物上的收集和频率分析的亚分析方法,例如,感应性耦合的血浆质谱法(ICP-MS)是耗时的,并且由于多个准备型的步骤而导致的测量误差,并且易于测量误差。基于非破坏性能量分散X射线荧光(EDXRF)的新兴近实时技术提供了连续监测和源代码的优势。这项研究通过应用直接的性能评估(包括)(a)检测极限(lod),(b)对不确定来源的识别和量化,以及(c)测量和比较的识别和比较,对三分之二的卢克斯(Luxem trast)的研究结果(c), 。 我们使用UC Davis的多元素参考材料(ME-RMS)进行校准,并在2023年春季和夏季进行了测量。 在1 h时间分离时,Ni,Cu,Zn和Pb等有毒元素的LOD低于3 ng m-3。 观察到更高的LOD的较轻元素(例如, al,si,s,k,ca)。 对高于20 ng m -3的元素浓度的扩展不确定性在5%至25%之间,浓度低于10 ng m -3,达到。 我们使用UC Davis的多元素参考材料(ME-RMS)进行校准,并在2023年春季和夏季进行了测量。 在1 h时间分离时,Ni,Cu,Zn和Pb等有毒元素的LOD低于3 ng m-3。 观察到更高的LOD的较轻元素(例如, al,si,s,k,ca)。 对高于20 ng m -3的元素浓度的扩展不确定性在5%至25%之间,浓度低于10 ng m -3,达到。我们使用UC Davis的多元素参考材料(ME-RMS)进行校准,并在2023年春季和夏季进行了测量。在1 h时间分离时,Ni,Cu,Zn和Pb等有毒元素的LOD低于3 ng m-3。观察到更高的LOD的较轻元素(例如,al,si,s,k,ca)。对高于20 ng m -3的元素浓度的扩展不确定性在5%至25%之间,浓度低于10 ng m -3,达到