RNA技术是一种新兴领域,利用RNA的独特结构和功能特性来构建纳米级结构并调节复杂的生物系统(Stewart,2024)。RNA已显示成各种形状,大小和复杂性的结构,从而在分子传感,药物输送,免疫调节和细胞活性调节中实现应用(Chandler等,2021)。这项基础工作表明了RNA分子及其化学类似物的显着潜力,作为开发个性化诊断和治疗应用的生物材料,这是许多体外和体内研究的证明,并通过几种FDA批准的配方进行了例证。然而,诸如核酸酶稳定性,有针对性的RNA疗法的靶向递送,其免疫反应的调节以及必须进一步解决的检测极限等关键挑战,以将RNA纳米技术完全转化为临床应用。该研究主题重点介绍了RNA技术的最新进步和创新工作,用于各种RNA类别的诊断和治疗学。该研究主题由国际领导人在核酸技术,药物输送和计算研究领域策划的六项评论和研究文章。所有手稿都呈现出广泛的创新技术,这些技术包括基因疗法的设计和优化,RNA的产生,逻辑门控,组织工程和新治疗靶标的验证。
已经做出了许多努力,以实现H 2 O掩盖的振动指纹。例如,由于其IR吸收带从H 2 O的吸收带转移,因此在FTIR测量中使用了替代溶剂(例如D 2 O,CCL 4和CS 2)。[4]另一种潜在的途径是缩短水溶液中的有效IR光学路径,以抑制H 2 O的干扰,例如吸收的总反射率(ATR)。[6]然而,由于弱光 - 材料的相互作用,溶剂替换和ATR都无法增强对纳米级的FTIR敏感性。因此,开发了表面增强的红外吸收(SEIRA)技术,用于原位探测纳米级样品,通过增强的表面等离子体的近场。[7]尽管基于金属的seira已经达到了高度的敏感性,但检测极限最终通过中IR中金属的光限制相对较差,最终限于单层分子。石墨烯等等离子体的极高光限制使其对Seira应用具有吸引力。[8]石墨烯 - 普拉烯增强FTIR的敏感性可以达到亚纳米尺度,这在识别固相和气相中的分子方面已被证明。[8a,9],在内部反射过程中,石墨烯可以增加水溶液中分子的IR吸收,但是缺乏可调性以及对笨重的ATR仪器的利用可防止其实际使用。[11]
导电聚合物(CPS)是具有共轭主链的一类聚合物材料。可以通过控制CP的掺杂态来核能CP的特性电和光学特性。由于其在水中的长期稳定性,CP已被证明是在水性环境中尤其是在水性环境中的电活性生物界面和电极材料。用作整合生物电子和设备的多功能接口和有机电极,已在各种生物学应用中研究并应用。本文对基于聚合物E的电化学传感器进行了回顾,尤其是在生物领域中使用的传感器。引入了带有不同设备设计的一般导电聚合物和衍生物及其主要的电化学传感平台。循环伏安法,差异脉冲伏安法,计时仪法,电化学阻抗光谱和石英晶体微平衡方法及其特征,作为用于分析药物和食物的检测方法。为了增强灵敏度并降低了感应平台的检测极限,已经设计和开发了各种基于CP的纳米复合材料。尽管由基于CP的纳米复合材料制成的电极通常胜过原始CP的电极,但需要更多的系统研究来提供对基于纳米复合材料的电极设计的见解。预计基于CP的传感器将有更多基于CP的传感器用于晚期食品和药物分析。
抽象的表面增强拉曼散射(SERS)平台可实现痕量分析物检测,具有重要的应用前景。通过构建/修改SERS底物的表面,可以将高稀释溶液中的分析物集中到局部活性区域中以进行高度敏感的检测。但是,由于制造过程的难度,平衡热点结构和同时平衡分析物的集中能力仍然具有挑战性。因此,制备密集有序的热点和有效浓度能力的SERS底物对于高度敏感的检测具有重要意义。在此,我们提出了AG和氟烷基修饰的分层装甲底物(AG/F-HA),该甲酸盐(AG/F-HA)具有双层堆叠设计,以将分析物浓度与热点结构相结合。微臂结构是通过飞秒激光处理来制造的,以充当超疏水和低粘合剂表面,以浓缩分析物,而阳极氧化铝(AAO)模板会形成纳米虫阵列,可作为密集和有序的热点。在热点和分析物浓度的协同作用下,Ag/f-Ha的检测极限降至10-7 m阿霉素(DOX)分子,RSD为7.69%。此外,AG/F-HA表现出极好的鲁棒性,可抵抗外部干扰,例如液体飞溅或磨损。基于我们的策略,通过对缺陷的微酮阵列进行构图,进一步探索了具有方向分析物浓度的SERS基板。这项工作为在各种情况下的现实实施打开了一种方法。
纳米结构的电化学生物传感器已经迎来了诊断精度的新时代,从而增强了临床生物标志物检测的敏感性和特异性。中,电容性生物传感可实现多个分子靶标的超灵敏标签检测。但是,与纳米结构平台的常规制造方法相关的复杂性和成本阻碍了这些设备的广泛采用。这项研究引入了一个电容式生物传感器,该生物传感器利用激光磨碎的还原氧化石墨烯(RGO)ELEC TRODE,该Elec Trodes装饰有金纳米颗粒(Aunps)。制造涉及激光标记的GO-AU 3 +膜,产生RGO-AUNP电极,通过按压戳面方法无缝传输到PET基板上。这些电极与特定生物受体功能化后,对生物分子识别具有显着的亲和力。例如,使用人IgG抗体的初步研究证实了使用电化学电容光谱学的生物传感器的检测能力。此外,生物传感器可以量化临床癌症生物标志物Ca-19-9糖蛋白。生物传感器的动态范围在0到300 u ml -1,检测极限为8.9 u ml -1。对人体液体预处理的CA-19-9抗原的已知浓度进行严格测试证实了它们在检测糖蛋白方面的准确性和可靠性。这项研究表示临床生物标志物的电容式生物传感方面的显着进展,可能导致更容易获得和成本效益的护理解决方案。
●具有低温和元素分析能力的透射电子显微镜(TEM):配备了Gatan Crotansfer持有者和牛津仪器能量色散X射线光谱仪(EDS)的JEOL JEEL JEM-2100(EDS)。●具有低温和元素分析能力的扫描电子显微镜(SEM):Zeiss Sigma-VP现场发射SEM配备了可变压力,次级电子,透镜和反向散射检测器,Gatan Alto Alto低温制备和加载模块,以及Oxford Encellorments Energy Instruments Energy Encellocts Energy Enstruments Energy Enstruments Energy Enstruments X-Ray Epperersive x-Ray Eppesermate(Eds)。●X射线衍射(XRD):Rigaku X射线衍射仪Ultima IV。●共聚焦拉曼显微镜(CRM):WITEC Alpha 300 R配备有电动XYZ阶段用于大面积摄入,两个激发激光波长(785和532 nm)和10倍至100倍的目标。●高意见筛选系统(HCS):Perkin Elmer Opera Phanix高通量共聚焦荧光显微镜。●傅立叶变换红外光谱仪和显微镜(FTIR):Shimadzu Irtracer-100 FTIR光谱仪,配备了固体和液体的衰减总反射(ATR),适用于传输和反射测量,并与Aimadzu AIM-9000 Microftir系统相结合。●X射线荧光(XRF):Shimadzu EDX-8100 XRF系统,用于粉末,散装和液体样品的元素分析。大气,真空和氦测量值低检测极限。
摘要。气溶胶生成技术扩展了气溶胶质谱法(AMS)的实用性,用于对机载颗粒和液滴的化学分析。但是,标准的雾化技术需要相对较大的液体量(例如,几毫升)和限制其效用的高样品质量。在这里,我们报告了需要低至10 µL样品的微型欺凌AMS(MN-AMS)技术的发展和表征,并且可以通过使用同位素标记的内部标准标准标记的Or- ganic和无机物质的纳米含量水平进行定量(34 sO 34 os 34 os)。使用标准SO,该技术的检测极限分别以0.19、0.75和2.2 ng的硫酸盐,硝酸盐和器官确定。这些物种的分析回收率分别为104%,87%和94%。该MN-AMS技术成功地应用了使用微小颗粒物(PM)采样器收集的过滤器和iM骨骼样品,可在未蛋白质的大气表调节平台上部署,例如未蛋式的空中系统(UASS)和绑扎气球系统(TBSS)。从能源部(DOE)南部大平原(SGP)天文台进行的UAS场运动收集的PM样品的化学组成。与通过共同固定的气溶胶化学物种物种(ACSM)测量的原位PM组成进行了很好的比较。此外,MN-AM和离子色谱(IC)很好地同意硫酸盐和硝酸盐的测量
摘要。通过总反射X射线荧光(TXRF)进行了优化的分类喷嘴的排列,已开发出一种新的级联冲击器。txrf提供了几个绝对质量图的范围内的检测极限,因此为气溶胶颗粒中重元的元素分析带来了巨大的潜力。要充分利用这种高灵敏度,必须在TXRF仪器的有效分析区域中收集颗粒,该仪器通常比商用撞击器或过滤器的典型沉积模式小。这是通过直径小于5 mm的圆形区域内的分类喷嘴的新型紧凑排列来实现的。从内部到喷嘴簇外部的喷嘴间距的密度降低,可以持续跨流量条件,从而最大程度地减少了单个喷嘴的相互震动。将多阶段级联撞击器的设计显示为单独采样PM 10,PM 2。5和PM 1大小分数。考虑到TXRF分析的高灵敏度,已经采取了建设性措施来防止损耗撞击物材料,这可能导致有条不紊的空白值。既无法观察到损耗和交叉污染的实验验证措施。此外,已经开发了一种新的自旋涂层方法,这使得可以在样品载体上涂上薄而定义的粘合剂层,具有良好的可配合性。在德国柏林Potsdamer Platz的一个案例研究中应用撞击器的应用表明,以中等体积的流量为5 lmin-1,在30分钟内收集的粒子质量是可重复的TXRF TXRF分析(Fe,Zn,Zn,Zn,
pyrochlore氧化物由于其阳离子电荷和阴离子缺乏效率而被认为是各种电化学应用的活性候选物。同时,pyrochlore的阳离子取代是改善电极材料催化活性的关键参数。在此背景下,本文旨在合成二氧化甲氧化物氧化物氧化物氧化物纳米颗粒(BI 0.6 y 1.4 SN 2 O 7; byso nps),并构建抗抗毒性氯丙嗪(CHPMZ)的电化学传感器。通过共沉淀技术进行催化剂,然后进行热处理。分析方法,例如P-XRD,FT-IR,TGA和XPS,确认了Bi3þ的成功取代。通过Fe-SEM和TEM技术分析了准备的催化剂的形态,这表明纳米颗粒的大小为⁓20E 30 nm。从CV结果中,阳离子的取代增强了CHPMZ的电催化氧化,这是由于固有活性增强而具有较大大小阳离子的替代性和pyrochlore结构的阴离子缺乏效率。此外,计算出BYSO/SPCE上CHPMZ的异质速率常数为4.49 10 3 cm/s,这表明BYSO/SPCE上CHPMZ的氧化是准可逆的。用BYSO NPS修饰的电极显示较宽的线性范围(0.01 E 58.41 m m,78.41 E 1158 m m),高灵敏度(1.03 m A/ m m/ cm/ cm 2),低检测极限为3 nm。修改的电极显示出良好的选择性,可重复性和良好的稳定性,可检测CHPMZ。©2022 Elsevier Ltd.保留所有权利。此外,构造的传感器在人类血清和尿液样品中恢复良好的实践分析中显示出令人鼓舞的结果。
目标:评估早期怀孕早期血清尿酸的价值,以预测妊娠糖尿病的发展(GDM)。方法:这项前瞻性观察队列研究包括336名妇女在怀孕的头三个月(妊娠13周)。尿酸,检测极限为10 mg/dl。GDM在妊娠24-28周使用DIPSI推荐方法诊断。该研究的主要结果是血清尿酸水平与GDM的发生和次要结果的发生是年龄,体重指数(BMI)的相关性,以及高风险因素与GDM的发展。p-值<0.05被认为具有统计学意义。结果:总共研究了336名产前妇女。大多数是21-25岁的年龄组(51.49%),Primigravida(65.18%),BMI <25kg/m 2(86.01%)。高危因素存在于40名(11.9%)患者中。血清尿酸水平在54(16.07%)的参与者中> 3.5 mg/dl。GDM的患病率为27(7.71%),其中24例血清尿酸较高。较高的年龄较高的GDM发生几率,优势比为8.125(p = 0.0004)。出现高危因子和尿酸增加的几率分别为11.722和74.4,分别用于GDM的发生(p <0.0001)。ROC曲线表明,标准> 3.5的血清尿酸水平的灵敏度为88.9%,预测GDM的特异性为90.3%。结论:当血清尿酸水平> 3.5 mg/dL时,没有已知的DM高风险因子的产前女性开发了GDM。总而言之,早期怀孕早期血清尿酸水平较高,可以作为预测GDM发展的新颖标志物。