摘要 在 EU-SST 研发活动框架内,法国国家太空研究中心和阿丽亚娜集团设计并开发了新的光学监视策略,以便以协调或非协调的方式对低地球轨道、中地球轨道和高地球轨道上的空间物体进行分类。这些活动的第一部分是分析公开文献中的最新技术,并根据从这些论文中找到的元素构建我们自己的解决方案。然后,针对每个轨道区域制定了监视策略,重点是低地球轨道和中地球轨道。两者都有一种协调模式:这意味着这些策略会考虑到站点位置和每个站点可以勘察的天空区域来优化要勘察的天空区域;还为每种策略开发了一种非协调模式,以便评估对性能的影响。针对每种轨道区域已经开发了几种监视模式,本文将对这些模式进行介绍。本文将基于法国国家太空研究中心 BA3E 模拟器和阿丽亚娜集团工具,描述这些策略在由 EU-SST 传感器形成的理论光学网络上的模拟性能。最后,在为期两周的活动期间,使用 GEOTracker® 传感器进行了一项操作实验,以挑战和评估这些策略在操作条件下的性能。
摘要 — 我们提出了一种新型紧凑型宽带波导 T 结功率分配器,特别适用于毫米波和太赫兹频率。它将基于基板的元件整合到波导结构中,以提供输出端口的隔离和匹配。内部端口引入在基板上形成为 E 探针的 T 结的顶点。这有助于将反射能量从输出端口有效地耦合到与 E 探针集成在同一基板上并通过薄膜技术制造的新型薄膜电阻终端。设计、模拟和制造了适用于 150-220 GHz 频带的功率分配器,以实验验证理论和模拟性能。结果表明,模拟和测量结果具有极好的一致性,对于三端口设备,输入和输出端口的回波损耗显著为 20 dB,输出端口之间的隔离度优于 17 dB。此外,测量的插入损耗小于 0.3 dB,幅度和相位不平衡分别为 0.15 dB 和 0°。此外,分压器对内置吸收负载的电阻材料的尺寸和薄层电阻具有出色的耐受性,使该设备成为毫米波和太赫兹系统(特别是射电天文接收器)非常实用的组件。
光同源性检测已被广泛用于测量字段正交的连续变量(CV)量子信息处理。在本文中,我们探讨了在“光子计数”模式下操作共轭同型检测系统以实现离散变量(DV)量子密钥分布(QKD)的可能性。共轭同源检测系统由光束分离器组成,然后是两个光学同伴检测器,可以同时测量传入量子状态的一对共轭四倍体x和p。在经典电动力学中,x 2 + p 2与输入光的能量(光子数)成正比。在量子操作中,X和P不上交,因此上述光子数测量本质上是嘈杂的。这意味着QKD标准安全证明的盲目应用可能会导致模拟性能。我们通过利用拟议检测方案的两个特殊特征来克服这一障碍。首先,外部对手不能操纵与真空浮游相关的基本检测噪声。第二,重建接收器末端的光子数分布的能力可以对对手的可能攻击施加其他约束。为例,我们使用共轭同胞检测来研究BB84 QKD的安全性,并通过数值模拟评估其性能。这项研究可以基于基于单光子检测和基于相干检测的CV-QKD的良好DV-QKD的互补,为新的QKD方案开辟了大门。
量子门通常容易受到驱动门的物理量子位所施加的经典控制场的缺陷的影响。减少这种错误源的一种方法是将门分成几部分,称为复合脉冲,通常利用错误随时间的恒定性来减轻其对门保真度的影响。在这里,我们扩展了这种技术来抑制拉比频率的长期漂移,通过将它们视为幂律漂移的总和,其对状态向量的过度或不足旋转的一阶效应呈线性相加。幂律漂移的形式为 tp,其中 t 是时间,常数 p 是其幂。我们表明,抑制所有幂律漂移(p ⩽ n)的复合脉冲也是滤波器阶数为 n + 1 的高通滤波器[H. Ball 和 MJ Biercuk,《用于量子逻辑的 Walsh 合成噪声滤波器》,EPJ Quantum Technol。 2,11(2015)]。我们给出了用该技术获得的满足我们提出的幂律幅度标准 PLA(n) 的序列,并将其在时间相关幅度误差下的模拟性能与一些传统的复合脉冲序列进行了比较。我们发现,在一系列噪声频率下,PLA(n) 序列比传统序列提供更多的误差抑制,但在低频极限下,非线性效应对门保真度的影响比频率滚降更为重要。因此,先前已知的 F1 序列是 PLA(1) 标准的两个解之一,可以抑制线性长期漂移和一阶非线性效应,在低频极限下,它是比任何其他 PLA(n) 序列更清晰的噪声滤波器。
摘要 — 混合存储器系统由新兴的非易失性存储器 (NVM) 和 DRAM 组成,已被提出用于满足应用程序日益增长的存储器需求。相变存储器 (PCM)、忆阻器和 3D XPoint 等新兴 NVM 技术具有更高的容量密度、最小的静态功耗和更低的每 GB 成本。然而,与 DRAM 相比,NVM 具有更长的访问延迟和有限的写入耐久性。两种存储器类别的不同特性指向包含多种主存储器类别的混合存储器系统的设计。在新架构的迭代和增量开发中,模拟完成的及时性对于项目进展至关重要。因此,需要一种高效的模拟方法来评估不同混合存储器系统设计的性能。混合存储器系统的设计探索具有挑战性,因为它需要模拟整个系统堆栈,包括操作系统、内存控制器和互连。此外,用于内存性能测试的基准应用程序通常具有更大的工作集,因此需要更长的模拟预热期。本文提出了一种基于 FPGA 的混合存储系统仿真平台。我们的目标是移动计算系统,该系统对能耗敏感,并且可能会采用 NVM 来提高能效。在这里,由于我们的平台专注于混合存储系统的设计,因此我们利用板载硬 IP ARM 处理器来提高模拟性能,同时提高结果的准确性。因此,用户可以使用 FPGA 逻辑元件实现其数据放置/迁移策略,并快速有效地评估新设计。结果表明,与软件 Gem5 相比,我们的仿真平台在模拟时间上加快了 9280 倍。索引术语 — 硬件仿真、FPGA 加速器、内存系统、NVM
• A/V 接收器 • 24 位分辨率 • DVD 电影播放器 • 模拟性能(V CC = 5 V): • 高端 PC 的 DVD 附加卡 – 动态范围:106 dB • DVD 音频播放器 – SNR:106 dB,典型值 • HDTV 接收器 – THD+N:0.002%,典型值 • 汽车音响系统 – 满量程输出:3.9 Vp-p,典型值 • 需要 24 位音频的其他应用 • 4×/8× 过采样数字滤波器: – 阻带衰减:-50 dB – 通带纹波:±0.04 dB PCM1780/81/82 是一种 CMOS、单片、 • 采样频率:5 kHz 至 200 kHz 集成电路,其中包括立体声数模转换器和支持电路。 、384 f S 、小型 16 引线 SSOP 封装。数据转换器使用 TI 的增强型多级 delta-sigma 架构,可实现出色的动态性能和更高的时钟抖动容限。PCM1780/81/82 接受 16 至 24 位数据的行业标准音频数据格式,从而轻松实现与音频 DSP 和解码器芯片的左对齐接口。支持高达 200 kHz 的采样率。 PCM1780/82 通过三线串行控制端口提供全套用户可编程功能,支持寄存器写入功能。 PCM1781 通过四个控制引脚提供一组用户可编程功能。 PCM1780 与 PCM1680(8 通道 DAC)引脚兼容。 – 开漏输出零标志 (PCM1782) • 硬件控制 (PCM1781): – I2S 和 16 位字,右对齐 – 数字去加重 – 软静音 – L、R 通道公共输出的零标志 • 电源:5V 单电源 • 小型 16 引脚 SSOP 封装(150 mil) • 与 PCM1680 引脚兼容
双向隐形传态是通过共享资源状态和本地操作与经典通信 (LOCC) 在双方之间交换量子信息的基本协议。在本文中,我们开发了两种看似不同的方法来量化非理想双向隐形传态的模拟误差,即通过归一化钻石距离和信道不保真度,并证明它们是等效的。通过将 LOCC 允许的操作集放宽到完全保留部分转置正性的操作集,我们获得了非理想双向隐形传态模拟误差的半正定规划下限。我们针对几个关键示例评估了这些界限:当根本没有资源状态时以及对于各向同性和沃纳状态,在每种情况下都找到了一个解析解。上述第一个示例为经典与量子双向隐形传态建立了基准。另一个示例包括由广义振幅阻尼通道对两个贝尔状态的作用产生的资源状态,我们为其找到了模拟误差的解析表达式,该解析表达式与数值估计一致(最高可达数值精度)。然后,我们评估了 [Kiktenko et al ., Phys. Rev. A 93 , 062305 (2016)] 提出的一些双向隐形传态方案的性能,发现它们不是最优的,并且没有超出上述双向隐形传态的经典极限。我们提出了一种可证明是最优的替代方案。最后,我们将整个开发推广到双向受控隐形传态的设置,其中有一个额外的协助方帮助交换量子信息,并且我们为该任务建立了模拟误差的半正定规划下限。更一般地,我们提供了使用共享资源状态和 LOCC 的二分和多分信道模拟性能的半正定规划下限。
• A/V 接收器 • 24 位分辨率 • DVD 电影播放器 • 模拟性能(V CC = 5 V): • 高端 PC 的 DVD 附加卡 – 动态范围:106 dB • DVD 音频播放器 – SNR:106 dB,典型值 • HDTV 接收器 – THD+N:0.002%,典型值 • 汽车音响系统 – 满量程输出:3.9 Vp-p,典型值 • 需要 24 位音频的其他应用 • 4×/8× 过采样数字滤波器: – 阻带衰减:-50 dB – 通带纹波:±0.04 dB PCM1780/81/82 是一种 CMOS、单片、 • 采样频率:5 kHz 至 200 kHz 集成电路,其中包括立体声数模转换器和支持电路。 f S 、384 f S ,小型 16 引线 SSOP 封装。数据转换器 512 f S 、768 f S 、1152 f S 具有自动检测功能,采用 TI 增强型多级 delta-sigma 架构 • 软件控制 (PCM1780、PCM1782):实现出色的动态性能和更高的时钟抖动容限。PCM1780/81/82 接受行业标准音频数据格式,数据格式为 16 至 24 位数据,可轻松与音频 DSP 和解码器芯片进行左对齐接口。– 数字衰减:支持高达 200 kHz 的模式可选采样率。• 0 dB 至 –63 dB,0.5 dB/步进 PCM1780/82 通过三线串行控制端口提供全套用户可编程功能,支持寄存器写入 – 数字去加重功能。PCM1781 通过四个控制引脚提供一组用户可编程功能。– 软静音 – 每个输出的零标志 PCM1780 与 PCM1680(8 通道 DAC)引脚兼容。– 开漏输出零标志 (PCM1782) • 硬件控制 (PCM1781): – I2S 和 16 位字,右对齐 – 数字去加重 – 软静音 – L、R 通道公共输出的零标志 • 电源:5V 单电源 • 小型 16 引脚 SSOP 封装 (150 mil) • 与 PCM1680 引脚兼容