摘要:本文介绍了模块化铁鸟新概念的控制架构和控制规律,旨在重现飞行载荷,以测试中小型飞机和无人机的移动式气动控制面执行器。铁鸟控制系统必须保证反作用力的驱动。一方面,液压执行器模拟飞行过程中由于气动和惯性效应而作用于移动表面的铰链力矩;另一方面,待测试的执行器施加主动铰链力矩来控制同一表面的角位置。参考气动和惯性载荷由飞行模拟模块生成,以重现操作过程中出现的更真实的情况。控制动作的设计基于用于产生载荷的液压装置的动态模型。该系统使用比例积分微分控制算法进行控制,该算法通过优化算法进行调整,同时考虑了被测执行器的闭环动力学、受控装置的不确定性和干扰。通过数值模拟证明了所提出的架构和控制规律的有效性。
1 不支持串行、运动控制、Profibus 或 Wiegand 模块。2 仅限四通道数字模块;不适用于高密度数字模块。3 需要 SNAP 正交输入模块 (SNAP-IDC5Q)。4 与 PAC Control Pro R8.2(或更高版本)或 PAC Control Basic R9.0(或更高版本)和 SNAP PAC 控制器一起使用时可用;或与 groov EPIC 处理器或 Allen-Bradley® PLC 系统一起用作远程智能 I/O 时可用。5 需要 SNAP 模拟 TPO 模块 (SNAP-AOD-29)。6 数字 I/O 模块只能放置在机架上的前 8 个插槽中。7 目前可用于除具有 4 个以上点的模拟模块之外的所有类型的模块。8 通过 SNAP PAC S 系列控制器与 OptoOPCServer 和 PAC Control 一起使用时可用。9 不支持串行事件。
1不支持串行,运动控制,Profibus或Wiegand模块。仅2个四通道数字模块;在高密度数字模块上不可用。3需要一个快速正交输入模块(SNAP-IDC5Q)。4与PAC控制Pro R8.2(或更高)或PAC控制基本R9.0(或更高)和SNAP PAC控制器一起使用;或用GROOV EPIC处理器或Allen-Bradley®PLC系统用作远程智能I/O时。5需要一个SNAP模拟TPO模块(SNAP-AOD-29)。6个数字I/O模块只能放置在机架上的前8个插槽中。7当前可在所有类型的模块上可用,除了超过4个点的模拟模块。8与optoopcserver和PAC控制使用时可用,通过SNAP PAC S系列控制器。9不支持串行事件。
1不支持串行,运动控制,Profibus或Wiegand模块。仅2个四通道数字模块;在高密度数字模块上不可用。3需要一个快速正交输入模块(SNAP-IDC5Q)。4与PAC控制Pro R8.2(或更高)或PAC控制基本R9.0(或更高)和SNAP PAC控制器一起使用;或用GROOV EPIC处理器或Allen-Bradley®PLC系统用作远程智能I/O时。5需要一个SNAP模拟TPO模块(SNAP-AOD-29)。6个数字I/O模块只能放置在机架上的前8个插槽中。7当前可在所有类型的模块上可用,除了超过4个点的模拟模块。8与optoopcserver和PAC控制使用时可用,通过SNAP PAC S系列控制器。9不支持串行事件。
本报告介绍了 2020 年 6 月 19 日至 7 月 9 日在伊利诺伊州诺斯布鲁克的 UL 大型火灾测试设施中进行的三项安装级测试的结果。安装级测试包括一个模拟启动储能系统 (ESS) 单元和两个目标单元,安装在配备防爆燃通风口的国际标准化组织 (ISO) 容器内。所有测试均采用相同的锂离子 (li-ion) 电池配置进行。启动 ESS 单元包括九个模块,总容量为 28.9 kWh。每个模拟模块包含九个模拟电池。每个模拟电池由 30 个 18650 锂离子电池组成,每个模拟电池的等效容量为 99 Ah。目标单元的装载容量为启动单元的三分之一。
1不支持串行,运动控制,Profibus或Wiegand模块。仅2个四通道数字模块;在高密度数字模块上不可用。3需要一个快速正交输入模块(SNAP-IDC5Q)。4与PAC控制Pro R8.2(或更高)或PAC控制基本R9.0(或更高)和SNAP PAC控制器一起使用;或用GROOV EPIC处理器或Allen-Bradley®PLC系统用作远程智能I/O时。5需要一个SNAP模拟TPO模块(SNAP-AOD-29)。6个数字I/O模块只能放置在机架上的前8个插槽中。7当前可在所有类型的模块上可用,除了超过4个点的模拟模块。8与optoopcserver和PAC控制使用时可用,通过SNAP PAC S系列控制器。9不支持串行事件。
需要对地热储量的估计来最大程度地利用地热能来源,以替代环保可再生资源。本研究旨在采用体积方法,即热量,以估算以水为主的地热储层产生电能的能力。这项研究使用蒙特卡洛模拟在基于Python的随机文库的帮助下估算地热储量,这些库可用于运行模拟。在这种情况下,随机功率电力评估(GPPEVAL)由三个主要模块组成:地热电厂模块,蒙特卡洛模拟模块和工具模块。本研究使用Z场Z的温泉数据来显示GPPEVAL在评估地热能潜力中的应用。随机模拟的频率分布的结果表明,该区域最初能够支持93.2 MWE的发电厂30年,其潜在增加高达101 MWE。将根据最新数据进行进一步的研究,以验证地热能的潜力。关键字:地热储量,蒙特卡洛模拟,gppeval,体积方法1。简介
经常,生命周期以能量形式(例如废物焚化的热量)或材料(例如废料)(例如废料)收到前世周期的输入,并产生在随后的生命周期中使用的输出(包括废料或能量)。为简单起见,我们将在以下讨论中将两种类型的输入和输出称为“回收酸盐”。根据EN 15804的EPDS,有价值的材料或能量的输出向随后的生命周期(即这些回收者)进行了解决。模块D在这里不是现实生活周期的一部分,而是一个抽象的术语,用于从以前和即将到来的生活周期收集净信用换句话说,现实中的生命周期,对于已研究的产品,由A1至C阶段组成,而包括信用的生命周期模型包括根据标准,产品加上模块D的生命周期。这将模块d与EPD生命周期中的所有其他模块区分开来,并提出了有关此模块正确建模的问题。本文的目的是根据EN 15804+A2提供有关模拟模块D的指导。
I. 引言 近年来,数字射频 (RF) 发射器 (TX) 越来越受欢迎。在数字域中实现发射功能有许多优势,例如,可以省去模拟模块,如可变增益放大器、失调消除数模转换器 (DAC) 和预驱动器。RF 发射器(无论是模拟还是数字)面临的最大挑战是线性度和效率之间的权衡,这反过来又导致了许多线性化技术的出现。由于芯片温度会随 TX 输出功率而有很大变化,因此必须实时继续线性化;也就是说,如果前台校准技术试图校正高度非线性的输出级,则它们会被证明是不够的。本文介绍了一种新的 TX 线性化方法,可在后台校正静态和动态非线性。校正的有效性允许设计 DAC 以实现具有几乎任意积分非线性 (INL) 的最大效率。以宽带码分多址 (WCDMA) 标准为例,简单、紧凑的架构提供了迄今为止报告的最高效率。该发射器采用 28 纳米标准 CMOS 技术实现,可提供 + 24.1 dBm 的功率,相邻信道功率比 (ACPR) 为 − 35.4 dB,总效率为 50%。
摘要 — 诸如老化和热应力等环境因素会严重影响集成电路 (IC) 的电磁兼容性行为。工业中可以使用标准化的 IC 传导发射模型 (ICEM-CE) 和 IC 传导抗扰模型 (ICIM-CI) 来预测 IC 和印刷电路板级别的电磁行为。然而,这些模型没有考虑到老化和极端温度变化的影响。在本文中,使用采用绝缘体上硅技术设计的定制 IC,其中包含多个独立的模拟模块,通过测量和晶体管级模拟来表征老化和温度对传导发射和抗扰的影响。执行高加速温度和湿度应力测试 (HAST) 来评估老化及其对 IC 参数的影响。结果表明,无源分布网络仅受热应力的影响,而不会受到 HAST 老化的影响。后者主要影响 IC 中的有源元件,并通过固有的永久性退化机制降低传导发射和抗扰度水平。此外,热应力主要导致晶体管特性(如阈值电压和有效迁移率)发生漂移,从而影响传导发射和抗扰度水平并导致软故障。从测量和模拟中收集的所有漂移/公差都经过了表征,以便可以将它们纳入 ICEM-CE 和 ICIM-CI 标准的未来版本中。