量子计算已承诺在我们解决经典问题的计算能力方面有前所未有的改进。尽管量子硬件的迅速开发[2,66],但近任期量子计算机仍可能具有非常有限的硬件资源,在这种情况下,“ Qubits”数量有限,而不可忽略的机器Noises会阻碍大型量子量算法的实施。最近的研究结果[60]和Physics [43]提出了一种设计资源噪声噪声中间尺度量子(NISQ)[51]应用的有希望的方法[51]通过破坏量子电路抽象并直接设计量子机脉冲控制的应用程序。1在经典模拟计算的历史史上,这种面向模拟方法的好处是由于轻松的硬件要求而早于数字计算的历史,并且在诸如模拟之类的域应用中起着重要作用。
摘要。我们提出了一个具有图形用户界面(GUI)的光子模拟量子计算的用户友好型软件,该软件允许方便地操作而无需程序化技能。可以通过导入波导位置文件或在GUI的交互式板上手动绘制配置来灵活地设置汉密尔顿人。我们的软件为二维量子步行,量子随机步行,多颗粒量子步行和玻色子采样提供了一种强大的理论研究方法,这可能都可以在光子芯片上的物理实验系统中实现,并且它将激发光子量子量子计算和量子计算的丰富多样性。我们已经改进了算法以确保永久计算的效率,并提供了有关教育用途的案例研究,这使用户更容易访问光子量子模拟的研究。©2022光学仪器工程师协会(SPIE)[doi:10.1117/1.oe.61.8.081804]
西门子的网络规划器 SINETPLAN 支持用户规划基于 PROFINET 的自动化系统和网络。此工具有助于在规划阶段对 PROFINET 安装进行专业且预测性的尺寸标注。此外,SINETPLAN 还为用户提供了有用的工具来优化网络,充分利用网络资源和规划储备。这样,甚至可以在计划使用之前避免调试期间出现问题以及生产阶段中断。这提高了生产工厂的可用性并有助于提高操作安全性。
标准配置包含: 1个高速脉冲输出端子(支持0-50kHZ方波信号输出) 1(F0)/2(F1及以上)个数字量输出端子 1(F0)/2(F1及以上)个继电器输出端子 1(F0)/2(F1及以上)个模拟量输出端子(支持0-10V电压输出或0-20mA电压输出) 以下扩展为卡式: 3个数字量输出端子 3个继电器输出端子 3个模拟量输出端子,支持0-10V电压输出或0-20mA电压输出
量子计算中最著名的结果之一是关于在古典计算机上模拟量子计算的资源成本的陈述。Gottesman-Knill Theorem指出,由具有稳定剂状态的cli or or组成的量子计算可以在具有多项式运行时的经典算法的意义上进行经典模拟,从而可以从输出>
本文在自由量子操作下建立了模拟量子通道的确切纠缠成本的单个字母公式,该量子量操作完全保留了部分转移的阳性(PPT)。首先,我们基于双方状态的κ键入的概念,引入了点对点量子通道的κ范围措施,并为其建立了几种基本特性,包括摊销崩溃,ppt superchannels下的单调性,ppt superchannels,addi-timitive timity,addi-timitive timitive timity,正常化,归一化,忠诚和非conconvexity。第二,我们介绍并解决了在平行和顺序设置中模拟量子通道的确切纠缠成本,并借助免费的PPT保护操作。尤其是我们确定在这两种情况下的纠缠成本均由相同的单个字母公式给出,κ键入量子通道。我们进一步表明,该成本等于发件人和接收器可以共享或生成的最大κ键。该公式可以通过半限定程序来计算,从而可以为一般量子通道提供有效的可计算解决方案。指出,顺序制度比平行制度更强大,当PPT超通道是免费的时,我们结果的另一个无表面含义是,这两个制度对于精确的量子通道模拟都具有相同的功率。对于几个基本的高斯量子通道,我们表明确切的纠缠成本由Holevo -Werner公式[Holevo and Werner,Phys提供。修订版A 63,032312(2001)],给出了这些通道的孔波妻子数量的操作含义。
查询量子评估Oracle(即零订单Oracle)。与Jin等人的经典最新算法相吻合。使用〜o(log 6(n) /ϵ1。< /div> 75)查询梯度甲骨文(即,第一阶甲骨文),我们的量子算法在log n方面更好地在多项式上,并以1 /ϵ表示其复杂性。 从技术上讲,我们的主要贡献是通过模拟量子波方程来代替梯度下降方法中的经典扰动的想法,这构成了量子查询复杂性的改善,并使用log n n因子逃脱了鞍点。 我们还展示了如何使用Jordan引起的量子梯度计算算法来替换具有相同复杂性的量子评估查询的经典梯度查询。 最后,我们还执行了支持我们理论发现的数值实验。使用〜o(log 6(n) /ϵ1。< /div>75)查询梯度甲骨文(即,第一阶甲骨文),我们的量子算法在log n方面更好地在多项式上,并以1 /ϵ表示其复杂性。从技术上讲,我们的主要贡献是通过模拟量子波方程来代替梯度下降方法中的经典扰动的想法,这构成了量子查询复杂性的改善,并使用log n n因子逃脱了鞍点。我们还展示了如何使用Jordan引起的量子梯度计算算法来替换具有相同复杂性的量子评估查询的经典梯度查询。最后,我们还执行了支持我们理论发现的数值实验。
自我:量子力学被认为是1900年代中期最重要的成功和最神秘的科学理论。然后,自然的基本力量,核物理,超导体等。。在1900年代末,人们只是开始询问是否可以设计真实的量子系统,而不是检查自然界中的量子事件。一些问题如下:创建量子情况的空间和时间的基本物理限制是什么?是什么使得很难通过传统的经典方法模拟量子系统?在这项研究中,我们提供了有关量子虱子和量子计算器的基本概念,并将其与经典的co选择进行比较。我们还指量子系统旨在模拟时遇到的基本困难。