摘要 目的.脑机接口(BCI)低效性意味着将有10%到50%的用户无法操作基于运动想象的BCI系统。值得注意的是,之前对BCI低效性的研究几乎都是基于感觉运动节律(SMR)特征的测试。在本研究中,我们利用SMR和运动相关皮层电位(MRCP)特征评估了BCI低效性的发生情况。方法.在不同的日子里,对93名受试者记录了2个会话中的静息态和运动相关脑电信号数据集。采用公共空间模式(CSP)和模板匹配两种方法提取SMR和MRCP特征,并采用赢家通吃策略利用线性判别分析的后验概率来评估模式识别,以结合SMR和MRCP特征。主要结果.结果表明,两类特征表现出高度的互补性,与它们的弱相互相关性相符。在二分类问题(右脚 vs. 右手)中 SMR 特征准确率较差(< 70%)的受试者组中,SMR 和 MRCP 特征的组合将平均准确率从 62% 提高到了 79%。重要的是,特征组合获得的准确率超过了效率低下阈值。意义。SMR 和 MRCP 的特征组合在 BCI 解码中并不新鲜,但使用 SMR 和 MRCP 特征对 BCI 效率低下进行大规模可重复的研究是新颖的。MRCP 特征对 SMR 特征准确率较差(< 70%)和良好(> 90%)的两个受试者组提供相似的分类准确率。这些结果表明,SMR 和 MRCP 特征的组合可能是降低 BCI 效率低下的一种实用方法。然而,在本研究之后,“BCI 效率低下”可能更恰当地被称为“SMR 效率低下”。
异常染色体是癌症,阿尔茨海默氏症,帕金森氏症,癫痫和自闭症等遗传疾病的原因。核型分析是诊断遗传疾病的标准程序。识别异常通常是昂贵的,耗时的,在很大程度上依赖专家解释,并且需要相当大的手动效果。e效应是为了自动化核图分析。但是,大型数据集的不可用,尤其是包括染色体异常的样本的数据集提出了一个重要的挑战。自动化模型的开发需要广泛的标记和令人难以置信的异常数据,以准确识别和分析异常,这些异常非常困难地获得了足够的数量。尽管基于深度学习的体系结构在医学图像异常检测中产生了最先进的性能,但由于缺乏异常数据集,它不能很好地概括。这项研究介绍了一种新型的混合方法,该方法结合了无监督和监督的学习技术,以克服有限标记的数据和可伸缩性的挑战。最初对基于自动编码器的系统进行了使用未标记的数据培训,以识别染色体模式。它是在标记的数据上进行的,然后使用卷积神经网络(CNN)进行分类步骤。使用了234,259个染色体图像的独特数据集,包括训练,验证和测试集。在染色体分析的规模中标记出显着的成就。所提出的混合系统准确地检测到单个染色体图像中的结构异常,在对正常和异常染色体分类时达到了99.3%的精度。我们还使用结构相似性指数度量和模板匹配来识别与正常染色体不同的异常染色体的部分。这种自动化模型有可能显着促进与染色体相关疾病的早期检测和诊断,从而影响遗传健康和神经系统行为。
摘要 - 纳米级候选人的出现提出了能够构建CMOL(CMOS/纳米线/分子)类型的超密集内存内计算电路架构的希望。在CMOL中,将在纳米线的交点上制造纳米级备忘录。CMOL概念可以通过在CMO上制造较低密度的神经元并与纳米线和纳米级 - 墨西哥纤维织物放置在顶部的纳米线和纳米级 - 梅斯托织物,从而在神经形态硬件中利用CMOL概念。但是,技术问题阻碍了目前可靠的可靠商业单片CMOS-MEMRISTOR技术的这种开发。一方面,每个备忘录都需要串联的MOS选择器晶体管,以确保大型阵列的形式和编程操作。这会导致复合Mos-Memristor突触(称为1T1R),这些突触不再是纳米线穿越时的突触。另一方面,回忆录尚未构成高度可靠,稳定的模拟记忆,用于逐步学习的大规模模拟重量突触。在这里,我们演示了一种伪 - 旋转整体芯片核心,该芯片绕过上面提到的两个技术问题:(a)利用一种类似CMOL的几何芯片布局技术来提高1T1R的限制,以及(b)利用二进制重量跨度的依赖性依赖性(s sTD),该规则(b)更大的二进制重量跨度的依赖性(b)使用的备忘录。实验结果是针对具有64个输入神经元,64个输出神经元和4096 1T1R突触的尖峰神经网络(SNN)CMOL核心提供的,该突触在顶部为200nm大小的TI/HFOX/TIN MEMRISTOR的130nm CMO制造。cmol-core使用查询驱动的事件读取,这允许内存可变性不敏感的计算。实验系统级别的演示是针对普通模板匹配任务的,以及正则化的随机二进制STDP特征提取学习,可在硬件中获得完美的识别,以进行4个字母的识别实验。
客观癫痫会影响神经加工,通常会导致颅内或半球间语言重组,仅基于解剖学地标(例如,Broca的区域)构成本地化。术前脑图对于权衡切除的风险和术后赤字的风险是必要的。然而,由于低依从性及其独特的神经生理学,在技术上,在儿科患者中使用常规图形方法(例如,体感刺激,基于任务的功能性MRI [FMRI])在技术上很困难。静止状态fMRI(RS-FMRI)是一种基于大脑在休息时神经活动的“无任务”技术,具有克服这些局限性的潜力。作者假设可以通过应用功能连接分析从RS-FMRI识别语言网络。方法案例均已审查了基于任务的fMRI和RS-FMRI作为癫痫手术术前临床方案的一部分。基于任务的fMRI由2个语言任务和1个电机任务组成。静止状态fMRI数据是在患者观看动画电影时获取的,并使用独立的组合分析(即数据驱动的方法)进行了分析。作者通过通过模板匹配过程与功能定义的语言网络模板进行相似性分析来从RS-FMRI数据中提取语言网络。骰子系数用于量化重叠。结果13名儿童接受了常规的基于任务的fMRI(例如动词产生,对象命名),RS-FMRI和1.5T的结构成像。为每个患者确定了与语言模板重叠最高的语言组件。语言横向化结果来自基于任务的fMRI和RS-FMRI映射是可比性的,在大多数情况下,一致性很好。休息状态fMRI衍生的语言图表明,在4例患者中,左侧语言在左侧,右侧为5例(38%),四名患者(31%)(31%)。在某些情况下,RS-FMRI表示语言表示更广泛。使用TEM板匹配方法在患者级别确定了静止状态fMRI衍生的语言网络数据。这项研究中有一半以上的患者表现出非典型语言横向化,从而提出了映射的需求。总体而言,这些数据表明该技术可用于术前识别儿科患者的语言网络。它还可以优化电极放置的术前计划,从而指导外科医生对癫痫发作区的方法。
对海岸线(水体与陆地之间的接触区)的分析意味着要解决这种边界在时间和空间上的动态性质。位置(自然变化)、测量技术和解释的高度不确定性影响海岸线测绘的准确性。海岸线指标(代表海岸线位置的自然沿海特征)的定义应尽可能满足客观性标准,以便实现海岸线特征遥感的可重复性并改进海岸线测绘技术。本研究的目的是测试基于对象的分类技术在检测和绘制荷兰斯希蒙尼克岛北部沙滩的海岸线指标方面的适用性。高光谱 AHS 图像与实地观察和实验室分析相结合,研究了区分物理海滩隔间的可能性。本研究确定了海滩陆地-水界面的光谱特征。反射率和水含量之间的强量化关系为海岸线指标的定义提供了见解。关于这一点,根据沙子湿度进行了端元选择。在这次选择中,光谱亮度是主要方面。反照率差异被视为 4 种表面沙层光谱特征:干沙、湿沙、湿沙和饱和沙。利用这种光谱特性,使用基于像素的分类器进行类可分性测试,结果证明沙的含水量可用于定义这 4 种水线特征:先前高水线、高水线、瞬时水线和低水线。为了绘制这些边界,应用了一种基于对象的边缘检测算法,称为“旋转变量模板匹配”。RTM 方法在预计要检测的 4 个边界中的 1 个中失败了。从 3 个检测到的边界的结果来看,有理由认为较高的含水量导致了指标的边缘定义。因此,检测海岸线指标的能力将向海方向下降。一个重要的含义是,定时图像采集几乎不会决定定位物理水线的可能性。本研究提出了海岸线指标的图像定义。基于对象的方法的目的是优化准确性和稳健性,这意味着对错误位置的良好定位和区分。通过使用可靠的特征进行检测,海岸线测绘方法得到了优化,其性能优于常见的测绘方法。本研究的结论是,通过仔细定义海岸线指标,可以绘制海岸线边界,并且我们开发的方法能够降低海岸线测绘中的不确定性水平。关键词:海岸线指标,边界、光谱特征、基于对象、土壤湿度、沙滩。
对海岸线(水体与陆地之间的接触区)的分析意味着要解决这种边界在时间和空间上的动态性质。位置(自然变化)、测量技术和解释的高度不确定性影响海岸线测绘的准确性。海岸线指标(代表海岸线位置的自然沿海特征)的定义应尽可能满足客观性标准,以便实现海岸线特征遥感的可重复性并改进海岸线测绘技术。本研究的目的是测试基于对象的分类技术在检测和绘制荷兰斯希蒙尼克岛北部沙滩的海岸线指标方面的适用性。高光谱 AHS 图像与实地观察和实验室分析相结合,研究了区分物理海滩隔间的可能性。本研究确定了海滩陆地-水界面的光谱特征。反射率和水含量之间的强量化关系为海岸线指标的定义提供了见解。关于这一点,根据沙子湿度进行了端元选择。在这次选择中,光谱亮度是主要方面。反照率差异被视为 4 种表面沙层光谱特征:干沙、湿沙、湿沙和饱和沙。利用这种光谱特性,使用基于像素的分类器进行类可分性测试,结果证明沙的含水量可用于定义这 4 种水线特征:先前高水线、高水线、瞬时水线和低水线。为了绘制这些边界,应用了一种基于对象的边缘检测算法,称为“旋转变量模板匹配”。RTM 方法在预计要检测的 4 个边界中的 1 个中失败了。从 3 个检测到的边界的结果来看,有理由认为较高的含水量导致了指标的边缘定义。因此,检测海岸线指标的能力将向海方向下降。一个重要的含义是,定时图像采集几乎不会决定定位物理水线的可能性。本研究提出了海岸线指标的图像定义。基于对象的方法的目的是优化准确性和稳健性,这意味着对错误位置的良好定位和区分。通过使用可靠的特征进行检测,海岸线测绘方法得到了优化,其性能优于常见的测绘方法。本研究的结论是,通过仔细定义海岸线指标,可以绘制海岸线边界,并且我们开发的方法能够降低海岸线测绘中的不确定性水平。关键词:海岸线指标,边界、光谱特征、基于对象、土壤湿度、沙滩。
对海岸线(水体与陆地之间的接触区)的分析意味着要解决这种边界在时间和空间上的动态性质。位置(自然变化)、测量技术和解释的高度不确定性影响海岸线测绘的准确性。海岸线指标(代表海岸线位置的自然沿海特征)的定义应尽可能满足客观性标准,以便实现海岸线特征遥感的可重复性并改进海岸线测绘技术。本研究的目的是测试基于对象的分类技术在检测和绘制荷兰斯希蒙尼克岛北部沙滩的海岸线指标方面的适用性。高光谱 AHS 图像与实地观察和实验室分析相结合,研究了区分物理海滩隔间的可能性。本研究确定了海滩陆地-水界面的光谱特征。反射率和水含量之间的强量化关系为海岸线指标的定义提供了见解。关于这一点,根据沙子湿度进行了端元选择。在这次选择中,光谱亮度是主要方面。反照率差异被视为 4 种表面沙层光谱特征:干沙、湿沙、湿沙和饱和沙。利用这种光谱特性,使用基于像素的分类器进行类可分性测试,结果证明沙的含水量可用于定义这 4 种水线特征:先前高水线、高水线、瞬时水线和低水线。为了绘制这些边界,应用了一种基于对象的边缘检测算法,称为“旋转变量模板匹配”。RTM 方法在预计要检测的 4 个边界中的 1 个中失败了。从 3 个检测到的边界的结果来看,有理由认为较高的含水量导致了指标的边缘定义。因此,检测海岸线指标的能力将向海方向下降。一个重要的含义是,定时图像采集几乎不会决定定位物理水线的可能性。本研究提出了海岸线指标的图像定义。基于对象的方法的目的是优化准确性和稳健性,这意味着对错误位置的良好定位和区分。通过使用可靠的特征进行检测,海岸线测绘方法得到了优化,其性能优于常见的测绘方法。本研究的结论是,通过仔细定义海岸线指标,可以绘制海岸线边界,并且我们开发的方法能够降低海岸线测绘中的不确定性水平。关键词:海岸线指标,边界、光谱特征、基于对象、土壤湿度、沙滩。
对海岸线(水体与陆地之间的接触区)的分析意味着要解决这种边界在时间和空间上的动态性质。位置(自然变化)、测量技术和解释的高度不确定性影响海岸线测绘的准确性。海岸线指标(代表海岸线位置的自然沿海特征)的定义应尽可能满足客观性标准,以便实现海岸线特征遥感的可重复性并改进海岸线测绘技术。本研究的目的是测试基于对象的分类技术在检测和绘制荷兰斯希蒙尼克岛北部沙滩的海岸线指标方面的适用性。高光谱 AHS 图像与实地观察和实验室分析相结合,研究了区分物理海滩隔间的可能性。本研究确定了海滩陆地-水界面的光谱特征。反射率和水含量之间的强量化关系为海岸线指标的定义提供了见解。关于这一点,根据沙子湿度进行了端元选择。在这次选择中,光谱亮度是主要方面。反照率差异被视为 4 种表面沙层光谱特征:干沙、湿沙、湿沙和饱和沙。利用这种光谱特性,使用基于像素的分类器进行类可分性测试,结果证明沙的含水量可用于定义这 4 种水线特征:先前高水线、高水线、瞬时水线和低水线。为了绘制这些边界,应用了一种基于对象的边缘检测算法,称为“旋转变量模板匹配”。RTM 方法在预计要检测的 4 个边界中的 1 个中失败了。从 3 个检测到的边界的结果来看,有理由认为较高的含水量导致了指标的边缘定义。因此,检测海岸线指标的能力将向海方向下降。一个重要的含义是,定时图像采集几乎不会决定定位物理水线的可能性。本研究提出了海岸线指标的图像定义。基于对象的方法的目的是优化准确性和稳健性,这意味着对错误位置的良好定位和区分。通过使用可靠的特征进行检测,海岸线测绘方法得到了优化,其性能优于常见的测绘方法。本研究的结论是,通过仔细定义海岸线指标,可以绘制海岸线边界,并且我们开发的方法能够降低海岸线测绘中的不确定性水平。关键词:海岸线指标,边界、光谱特征、基于对象、土壤湿度、沙滩。
对海岸线(水体与陆地之间的接触区)的分析意味着要解决这种边界在时间和空间上的动态性质。位置(自然变化)、测量技术和解释的高度不确定性影响海岸线测绘的准确性。海岸线指标(代表海岸线位置的自然沿海特征)的定义应尽可能满足客观性标准,以便实现海岸线特征遥感的可重复性并改进海岸线测绘技术。本研究的目的是测试基于对象的分类技术在荷兰斯希蒙尼克岛北部沙滩上检测和绘制海岸线指标的适用性。将高光谱 AHS 图像与实地观察和实验室分析相结合,研究区分物理海滩隔间的可能性。这项研究确定了海滩陆地-水界面的光谱特征。反射率和水分含量之间量化的强关系为海岸线指标的定义提供了见解。对此,根据沙土湿度进行了端元选择。在此选择中,光谱亮度是主要方面。反照率差异被视为 4 种表面沙土覆盖的光谱特征:干沙、湿沙、湿沙和饱和沙。利用这种光谱特性,使用最小距离类、基于像素的分类器进行了类可分性测试,证明了沙土水分含量可用于定义这 4 种水线特征:先前高水位线、高水位线、瞬时水位线和低水位线。为了绘制这些边界,应用了一种称为“旋转变量模板匹配”的基于对象的边缘检测算法。RTM 方法在预计要检测的 4 个边界中的 1 个中失败了。从检测到的 3 个边界的结果来看,有理由认为较高的水分含量导致了指标的边缘定义。因此,检测海岸线指标的能力将向海方向下降。一个重要的含义是,定时图像采集几乎不会决定定位物理水线的可能性。本研究提出了海岸线指标的图像定义。关键词:海岸线指标、边界、光谱表征、基于对象、土壤水分、沙滩。基于对象的方法的目的是优化准确性和稳健性,这意味着良好的定位和对错误位置的区分。通过使用可靠的特征进行检测,海岸线测绘方法得到了优化,其性能优于常见的测绘方法。这项研究的结论是,通过仔细定义海岸线指标,可以绘制海岸线边界,并且我们开发的方法能够降低海岸线测绘中的不确定性水平。
定量测量微电子设备中电场的定量测量由位于原位的STEM Victor Boureeau 1,Lucas Bruas 2,Matthew Bryan 2,Matthew Bryan 2,Jean-LucRouvière3和David David Cooper 2** 1* 1。电子显微镜跨学科中心,EPFL,洛桑,瑞士。2。大学。Grenoble Alpes,CEA,Leti,Grenoble,法国。3。大学。Grenoble Alpes,CEA,Irig-Mem,Grenoble,法国。*通讯作者:David.cooper@cea.fr纳米尺度上字段的定量映射对于了解设备的行为并提高其性能至关重要。从历史上看,这是通过过轴电子全息图执行的,因为该技术已经成熟并提供了可靠的定量测量[1]。近年来,硬件的改进使扫描传输电子显微镜(STEM)实验期间的衍射模式的记录成为可能,从而生成所谓的4D-STEM数据集。越来越多的数据处理方法与特定的采集设置相结合,导致了广泛的像素化词干技术[2]。在这里,我们探讨了以像素化的茎构型进行的差异相位对比度(DPC)技术[3] [4]。它允许根据衍射平面中发射光束的强度位移对电场进行定量测量。我们将展示如何受显微镜和数据处理的配置影响类似DPC的像素化的茎测量值。结果将与电子全息图和仿真进行比较。样品在图1和图2中显示。1(c)。开始,我们将在掺杂的硅P -N结上进行工作,并以对称1 E 19 cm -3的浓度掺杂,在-1.3 V的反向偏置下进行检查。使用此样品,平均内部电位(组合电位)没有变化,偏置电压会增加内置电场。通过聚焦的离子束制备了连接的横截面,并在FEI Titan显微镜中使用Protochips Aduro 500样品支架附着在芯片上进行原位偏置实验,该实验在200 kV下运行。1(a,b),晶体厚度为390 nm,如收敛束电子衍射测量。使用二级离子质谱掺杂剂测量作为输入,用Silvaco软件对结中的电场进行建模。整个连接处的轮廓如图通过离轴电子全息图测量了偏置连接的电场,请参见图。1(c,d),并在除去非活动厚度后与建模很好地一致[1]。反向偏见的P-N连接的电场的大小约为0.65 mV.cm -1,耗尽宽度约为60 nm。已经研究了不同的像素化的茎构和处理方法,以测量连接处的电场。当探针大小大于特征场变化长度时,导致射击梁内部强度重新分布时,使用了一种算法(COM)算法。当传输梁小于场变化并经历刚性变速时,使用模板匹配(TM)算法[5]。2(a)。电场图如图首先,使用低磁化(LM)茎构型,使用的一半收敛角为270 µRAD,相机长度为18 m。连接处的衍射图显示了传输梁边缘处强度的重新分布,因此使用COM加工,请参见图。2(e)和图中绘制了一个轮廓。2(i)。连接点的耗尽宽度似乎约为100 nm,这表明由于LM茎配置的探针大小较大,