混凝土是最常见的建筑材料。混凝土类型丰富,配方取决于特定用途。混凝土的微观结构通常是强烈的异质性,具有水泥,细和粗骨料,充满空气的毛孔和各种增援。混凝土的计算模型通常会大大降低以确保安全性。更精确的模型可以从材料和CO 2排放方面巨大节省。通过3D计算机断层扫描(CT)观察到的原位机械测试,特别是观察到3D的裂纹起始和生长可以帮助改善这些模型。 大规模的CT系统gulliver专用于研究分别为6 m和1 m的现实大型混凝土束和宽度的疲劳动力学。 分析在原位弯曲测试中生成的图像数据需要特别可靠的检测和正确分割薄裂纹。 因此,最近比较了裂纹分割的算法[1],扩展到多尺度裂纹[2,3],适用于纤维增强的混凝土[4,5],甚至是新发明的[6,7]。 对于方法的公平定量比较以及机器学习模型的培训和开发,基于合成裂纹结构的半合成CT图像[8-10]至关重要。 首先,裂纹是作为分数布朗动作的实现[11]。 后来,由于其多功能性,首选由随机伏罗尼叶镶嵌物的小平面形成的最小表面[8]。 在[13,14]中研究了裂纹与混凝土微观结构之间的相互作用。通过3D计算机断层扫描(CT)观察到的原位机械测试,特别是观察到3D的裂纹起始和生长可以帮助改善这些模型。大规模的CT系统gulliver专用于研究分别为6 m和1 m的现实大型混凝土束和宽度的疲劳动力学。分析在原位弯曲测试中生成的图像数据需要特别可靠的检测和正确分割薄裂纹。因此,最近比较了裂纹分割的算法[1],扩展到多尺度裂纹[2,3],适用于纤维增强的混凝土[4,5],甚至是新发明的[6,7]。对于方法的公平定量比较以及机器学习模型的培训和开发,基于合成裂纹结构的半合成CT图像[8-10]至关重要。首先,裂纹是作为分数布朗动作的实现[11]。后来,由于其多功能性,首选由随机伏罗尼叶镶嵌物的小平面形成的最小表面[8]。在[13,14]中研究了裂纹与混凝土微观结构之间的相互作用。这些合成的裂纹结构可以模仿多种裂纹形态,包括局部厚度分布和分支,并具有几个程度的表面粗糙度,因为[12]很好地证明了。到目前为止,合成裂纹并未与将CT图像用作背景的混凝土的微观结构相互作用。特别是,将裂缝分类为周围的混凝土组件。这是通过两步过程实现的。首先,通过模板匹配对裂纹结构进行了分割。然后,根据模板的方向上的灰色值对裂纹进行分类。在这里,我们提出了一种依赖于分割裂纹和聚集体的方法。然后将裂纹分配给两个可能的类别之一:经晶(通过聚集体)或晶间(聚集体之间)。然后,经晶裂纹体素的相对数量产生了一个度量,以量化裂纹行为的差异。在这里,我们研究了相同组成的难治性混凝土样品,但在不同温度下被后加工(烧结)。在压缩应力下扫描样品。他们清楚地表明,裂缝确实与混凝土的微观结构相互作用,请参见图1。裂纹可能沿聚集体,通过它们或通过周围的水泥矩阵传播。在失败之前,分析载荷步骤的经晶和晶间体素的分数进一步量化了烧结温度的影响。我们在两个圆柱形耐火混凝土样品的示例中演示了这一分析,分别在1.000°C和1.600°C下烧结。最近,我们为裂纹结构设计了一种多功能几何模型[8,9],用于方法验证和比较以及机器学习方法的训练 - 由随机Voronoi Tessellation的相位形成的最小表面。最小表面计算的优化方法的改进版本可实现多标准优化[17]。在这里,我们利用了这种新的可能性来生成合成裂纹结构,该结构避免了聚集体或通过图1中的真实混凝土样品中观察到的。