列车在隧道中移动时产生的气流可用于地下铁路通风。这种气流的大小在很大程度上取决于列车的阻塞率(列车和隧道横截面积之比)。本研究调查了由于改变列车气动阻力而对产生的气流的影响,以此来改变阻塞率。气动阻力的改变是通过使用不同倾斜角度的机翼来实现的。开发了一种列车穿越隧道的二维计算流体动力学模型,并使用文献中的实验数据进行了验证。然后,该模型用于研究机翼对置换空气量的影响以及对列车所做气动功(列车因空气阻力所做的功)的影响。本研究结果表明,使用固定角度 10 的翼型,通风气流可增加 3%,而不会增加气动功。通过在列车运动的不同阶段使用不同角度的组合,可实现最大 8% 的空气排量增加,同时不会增加列车所做的气动功。这相当于列车产生的空气排量在列车运动期间额外提供 1:6 m3 s1 的空气供应。2016 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
最近,无人机在商业用途上的可用性和使用量显著增加。这种趋势是由这些设备的灵活性和高速能力推动的,它们的速度可以达到 150 公里/小时。这种现象的迅速增加对世界范围内的安全和防御提出了根本性的挑战,正如正在进行的俄乌冲突所证明的那样。无人机中使用塑料、环氧树脂和玻璃纤维等建筑材料会导致雷达横截面积较小。这就需要实施光电技术以实现可靠的检测和识别。尤其是当涉及到速度可达 200 公里/小时的商用竞速无人机,或者速度可达 600 公里/小时的新型喷气式 Shahed-238 时,迫切需要快速反应对策。这是因为这些无人机飞行高度较低,有效雷达截面(RCS)相对较小,检测通常需要透射频谱特征分析、速度和运动分析或光学识别。此外,熟练的操作员使用第一人称视角(FPV)护目镜可以熟练地控制快速无人机,这对物理拦截策略构成了重大挑战,而俄乌战争的经验表明,物理拦截策略无效、容易因数量过多而不知所措且成本高昂。
A 表面 (m2) A 翅片横截面积 (m2) A 1 圆柱体内表面 (m2) A 1 与冷却空气接触的框架壳体表面 (m2) AF in 翅片表面 (m2) A f 框架壳体有效面积 (m2) 热容 (W x sl°C) C p 恒压比热容 (JIK11°C) 外径 (m) 标量因子 热导纳 (WI°C) [G] 导纳矩阵 对流传热系数 (w/ocm2) h f 框架薄膜系数 (WI°Cm2) 长度 (in) hFi „ 翅片薄膜系数 (W/°Cm2) H Fi„ 散热片轴向长度 (m) 电流 (A) k a 层压轴向热导率 (WI°Cm) k r 层压径向热导率 (WI°Cm) k e 表观热导率 (WI°Cm) k i 热导率槽绝缘的导热系数 (WI°Cm) k 翅片 翅片的热导率 (WI°Cm) k 空气 空气的热导率 (WI°Cm) l g 气隙长度 (m) N pr 普朗特数 A r u 努塞尔特数
本工作采用了一种创新技术——电弧增材制造 (WAAM),这是一种定向能量沉积技术,用于裂纹钢部件的疲劳强化。在高周疲劳载荷条件下测试了不同的带有中心裂纹的钢板,包括参考板、用 WAAM 修复的具有沉积轮廓的钢板以及用 WAAM 修复并随后进行加工以降低应力集中系数的钢板。进行了相应的有限元模拟,以更好地理解 WAAM 修复的机理。参考板上现有的中心裂纹在 94 万次循环后扩展并导致断裂,而两块 WAAM 修复板中的中心裂纹并未扩展,这是由于净横截面积增加以及沉积过程引起的压应力。然而,在第二块钢板中,由于局部应力集中,在 WAAM 轮廓根部出现了新的裂纹,疲劳寿命达到了 220 万次循环(是参考板的 2.3 倍)。另一方面,第三块钢板由于加工轮廓光滑,经受了 900 多万次疲劳循环,没有出现明显的退化。这项研究的结果表明,WAAM 修复技术在解决钢结构疲劳损伤方面具有巨大潜力。
摘要 — 微电子热敏电机 (TE) 发电机 (μ TEG) 是一种常见的潜在解决方案功率发电机和单相集成电路 (IC)。由于 µ TEG 电路中的寄生电阻和热阻,因此存在性能限制。寄生效应或曼塞洛斯可能会严重影响使用相对低 TE 性能指标(如硅 (Si))的 TEG 器件。在这种情况下,必须仔细注意整个 TEG 电路,而不仅仅是 TE 材料特性。这里,μ TEG 器件的定量模型包括所有与 I C 兼容的常见的重要电和热寄生器件。该模型提供了有关可再生能源发电和效率的耦合方程组或数值解。考虑到现场的抗裂性和实际性能值,该模型显示了 TE 元件总横截面的横截面积热比(称为“包装分数”)。在整个区域或在其流动区域,可以指定功率或效率,但不能同时实现两者。对于实际的材料和设备参数,优化系数通常为 1 % – 1 0 %,低于许多 µ TEG 设计中使用的值。模型说明了一些 TEG 示例的发电情况,并提供了显着的性能或改善效果的设计。索引术语——能源采集、热电 (TE)、TE 发电机。
本研究旨在利用 ABAQUS 有限元软件确定各种影响参数(例如隧道直径 (D)、深度 (H)、宽度 (B)、长度 (L)、楼层数、建筑物与隧道轴线的水平距离 (X))以及土壤特性(例如内摩擦角 (ϕ)、泊松比 (υ)、弹性模量 (E) 和黏聚力 (C))对地表沉降的影响。结果显示,在一定深度下,沉降随隧道直径的增加而增加,而随隧道深度的增加而减小。建筑物宽度和长度的变化也会直接影响沉降;因此,随着建筑物的横截面积及其刚度和硬度的增加,建筑物的宽度和长度增加,地基沉降变得更加均匀且更耐位移,从而导致地表沉降减少。此外,随着建筑物与隧道轴线的距离增加,沉降减少并在等于隧道直径的距离后呈现恒定趋势。根据敏感性分析的结果,隧道深度对地表沉降的影响最大,可以通过控制隧道距离地面的深度来防止地表沉降。此外,在土壤地质力学参数中,弹性模量在本研究中对沉降的影响最大。最后,根据结果,隧道、建筑物和土壤特性对地表沉降的影响非常重要,尤其是在城市环境中。
• 安培 (A、amp、amperage) o 用于表示电子 (电流) 流动的测量单位 o 一安培表示每秒通过电路中给定点的一库仑 (62.8 亿 - 十亿个电子) 的流量 o 在数学问题中,安培用字母“I”表示 • 电池 o 一种由多个串联连接的一次伏打电池 (无法充电的电池) 或二次电池 (可以充电的电池) 组成的装置,用于获得所需的直流电压 o 电池储存化学能并以电能形式提供 o 飞机蓄电池的额定电压通常为 12 伏或 24 伏 • 电容器 o 用于以静电场的形式储存电能的电气元件 o 电容器是由两个平行导体组成的装置,由绝缘体隔开 • 导体 o 电路的常见构建块,可轻松允许电子从电源移动到负载并返回电源的电阻最小 o 导体的电阻取决于横截面积、长度、温度和导体材料等因素 • 库仑 o 电量的基本单位 o 库仑等于 62.8 亿个电子 (6.28 X 10 的 18 次方) • 电流 o 电子通过导体的流动称为电流 o 电流的速率以安培为单位 • 直流电 o 电子在一个方向上流动
熔融沉积成型 (FDM),也称为熔融长丝制造 (FFF),是增材制造领域最成熟的技术之一,由于使用和维护成本低 [1],在低熔点聚合物中广受欢迎。进料材料以长丝形式通过加热喷嘴进料,并逐层沉积在表面上。商用热塑性塑料如丙烯腈丁二烯苯乙烯 (ABS)、聚碳酸酯 (PC)、尼龙、聚乳酸 (PLA) 及其组合经常用于生产 FDM 部件 [2]。虽然可以实现高度复杂的几何形状,但这会引发相对于块体材料的三种主要强度降低机制 [3]:(i) 由于空隙导致横截面积减小。仅此一项就已证明对抗拉强度有巨大影响 [4]。(ii) 空隙引起的应力集中。基于这一观察,Xu 和 Leguillon [5] 提出了双缺口空隙模型来解释 3D 打印聚合物的各向异性拉伸强度。(iii)聚合物链的不完全相互扩散。与几何方面无关,这会降低材料本身在细丝边界处的强度 [1] 。这三种现象由大量工艺参数控制,这些参数的强大影响和复杂相互作用超出了我们目前的知识范围,是一个活跃的研究领域。Cuan-Urquizo 等人 [6] 确定了两大类参数,即制造参数(例如喷嘴温度和打印速度)以及结构参数,
流量测量结构被定义为安装在明渠或封闭管道中的水力结构,这些管道具有自由水位,在大多数情况下,可以从测量的上游水位得出流量。图 1 显示了流量测量结构。事实上,这种结构是人为减少渠道或管道的横截面积,导致上游水位上升,从而导致结构上的水位下降。如果减少幅度足够大,我们就会得到流量和上游水位之间的独特关系。通过连续测量这个水位,我们还可以获得流量随时间变化的连续记录。流量和上游水位之间的关系主要取决于结构的形状和尺寸,而上游渠道或管道的几何形状则略有不同。可以从理论方法建立该关系,该方法需要通过校准来支持,校准主要通过水力模型研究进行。在过去的几个世纪中,设计了多种类型的流量测量结构,其特性满足了现代水资源开发的需求,特别是在灌溉计划和水文研究中。了解流量测量结构的使用的最有效方法是查阅专门针对这些结构发布的手册。这样的手册 [1] 和 [2] 不仅对现有结构进行了相当完整的回顾,而且还提供了必要的基本原理和实用概述,说明如何根据特定需求选择最合适的结构以及如何进行流量测量结构的水力设计。本章讨论堰、水槽和闸门等明渠中的流量测量结构。此外,其中一些结构用于具有自由水位的封闭管道,例如下水道。
1-D PCM 棒的横截面积,[m 2 ] 比热,[J kgK ⁄ ] 运行成本,[$ yr ⁄ ] 电价,[$ kWhr ⁄ ] 管材成本,[$ kg ⁄ ] PCM 材料成本,[$ kg ⁄ ] 管内传热系数,[W m 2 K ⁄ ] 总时间步数 电导率,[W mK ⁄ ] 管总长度,[m ] 平准化能源成本,[$ MWh ⁄ ] PCM 潜能,[kJ kg ⁄ ] 径向网格数 管长网格数 努塞尔特数 普朗特数 传热速率,[W] 传热速率,[W] HTF 总质量流速,[kg s ⁄ ] 环内半径,[m] 环状几何中的移动凝固前沿,[m]环形圆柱体 PCM 的热阻,[ m ] 圆柱体 PCM 内的热阻,[ KW ⁄ ] 导热流体内的热阻,[ KW ⁄ ] 雷诺数 温度,[ ℃ ] 边界冷却温度,[ ℃ ] 相变材料熔化温度,[ ℃ ] 管与圆柱体 PCM 之间的界面温度,[ ℃ ] 管内导热流体的速度,[ ms ⁄ ] 管壁厚度,[ mm ] 壳体厚度,[ mm ] 一维 PCM 棒的长度,[ m ] 每天运行小时数,[ hr ] 凝固时间,[ hr ] 移动凝固前沿,[ m ] 设备总寿命,[ yr ] 环形圆柱体 PCM 的轴长,[ m ] 两个坐标系之间的凝固前沿比率 密度,[ kg m 3 ⁄ ] 粘度,[ Pa ∙s ] 潜能储存系统的有效性矩形几何结构显热能分数因子 圆柱形几何结构显热能分数因子 差值或增量步长 泵效率