为了在现实世界中部署强化学习(RL)代理,它们必须能够推广到看不见的环境。但是,RL在分布外的概括方面挣扎,通常是由于过度拟合培训环境的细节。尽管可以应用监督学习的正则化技术来避免过度插入,但超级学习和RL之间的差异限制了其应用。为了解决这个问题,我们提出了RL的信噪比调节的参数不确定性网络(SNR PUN)。我们将SNR作为正规化网络的参数定向的新量度,并提供了正式分析,解释了SNR正则为什么对RL效果很好。我们证明了我们提出的方法在几个模拟环境中概括的有效性;在一个物理系统中,显示了使用SNR PUN将RL应用于现实世界应用程序的可能性。
我们引入了一个新的量子 R'enyi 散度 D # α,其中 α ∈ (1 , ∞ ) 以凸优化程序定义。此散度具有多种理想的计算和操作特性,例如状态和通道的高效半正定规划表示,以及链式法则特性。这种新散度的一个重要特性是它的正则化等于夹层(也称为最小)量子 R'enyi 散度。这使我们能够证明几个结果。首先,我们使用它来获得当 α > 1 时量子通道之间正则化夹层 α -R'enyi 散度的上界的收敛层次。其次,它使我们能够证明当 α > 1 时夹层 α -R'enyi 散度的链式法则特性,我们用它来表征通道鉴别的强逆指数。最后,它使我们能够获得量子通道容量的改进界限。
自旋是量子粒子或场的一个基本但非平凡的固有角动量属性,它出现在相对论场论中。波场中的自旋密度由基于正则动量密度和动能动量密度之间差异的理论 Belinfante-Rosenfeld 构造描述。这些量通常被认为是抽象的和不可观察的。在这里,我们从理论和实验上证明,Belinfante-Rosenfeld 构造自然出现在重力(水面)波中。在那里,正则动量与广义斯托克斯漂移现象有关,而自旋是由水粒子的亚波长圆周运动产生的。因此,我们直接将这些基本场论属性观察为经典波系统的微观力学属性。我们的发现揭示了波场中自旋和动量的性质,证明了相对论场论概念的普遍性,并为它们的研究提供了一个新的平台。
电子断层扫描作为一种重要的三维成像方法,为从纳米到原子尺度探测材料的三维结构提供了一种强有力的方法。然而,作为一个重大挑战,缺楔引起的信息丢失和伪影极大地阻碍了我们获得高保真度的纳米物体的三维结构。从数学上讲,断层扫描逆问题定义不明确,因为解是不唯一的。传统方法,如加权反投影 (WBP) 和同时代数重建技术 (SART) [1],由于倾斜范围有限,缺乏恢复未获取的投影信息的能力;因此,使用这些方法重建的断层图像会失真,并受到伸长、条纹和鬼尾伪影的污染。总方差最小化 (TVM) [2] 结合了迭代重建和正则化,已被开发用于恢复丢失的信息并减少由缺失楔形引起的伪影。然而,TVM 的一个缺点是它不是无参数的并且计算成本高昂。除此之外,TVM 或任何广义 TVM 方法的真正问题是它们被绑定到一个正则化,该正则化会促进对解决方案的一个先验约束,而该解决方案可能适合也可能不适合感兴趣的对象。在本文中,我们应用机器学习,特别是深度学习来解决这个问题。图1 显示,通过在正弦图和断层图域中分别加入两个修复生成对抗网络 (GAN) 模型可以有效地恢复未获取的投影信息 [3]。我们首先设计了一个基于生成对抗网络 (GAN) 中的残差-残差密集块的正弦图填充模型。然后,使用 U-net 结构生成对抗网络来减少残差伪影。联合深度学习模型对于缺失角度高达 45 度的缺失楔形正弦图实现了卓越的断层扫描重建质量。该模型性能的提高源于将问题分解为两个独立的域。在每个域中,都可以有效地学习基于训练过的“先验”的独特解决方案。此外,与基于正则化的方法相比,这种深度学习方法是一种没有任何超参数的端到端方法。其性能与先验知识或人类操作员设置超参数的经验无关。
最近,已经启动了几种针对地球大气的远红外和微波遥感的新一代工具,使我们能够根据热发射技术观察大气成分。这些新技术和观察数据为将来更加专门的大气研究任务铺平了道路。我论文的动力是对解决大气遥感中出现的非线性反问题的强大版本算法的兴趣日益兴趣。提出了高分辨率辐射转移计算的检索代码PIL(对肢体发声的反转),并提出了来自红外和微波肢体声音测量测量的大气参数的重建。采用的前进模型通过考虑仪器性能和测量特征,以有效的方式模拟物理上现实的肢体发射光谱。尤其是,自动差异(AD)技术提供了快速可靠的确切JACOBIAN的实现,是远期模型的特殊优化功能。反转方法基本上是基于具有自适应(直接和迭代)数值正则化方法的非线性最小二乘框架。这些正则化技术的性能依赖于正规化参数选择方法的设计和A后部停止规则。检索误差的表征,包括平滑误差,噪声误差和模型参数误差,评估了正则化解决方案的准确性。关键错误来源,数据质量)。PILS与荷兰空间研究所(SRON)制定的检索代码之间的比较,处理辐射转移和倒置计算,并用预先确定的输入进行处理,旨在阐明实施的正确性和一致性。在正向模型中的小差异主要是由于连续吸收和辐射传递方程的整合而导致的。检索结果中差异的可能原因是所采用的不同反演方法(正则化,先验信息)和离散化的后果。通过分析合成和真实的辐射光谱,讨论了通过Telis(Terahertz和Simbillimimightimeter Limb Sounder)从气球传播测量(Terahertz和simbillimimightimeter Limb Sounder)中取出气体检索的结果。羟基自由基(OH)检索的灵敏度研究用于评估PIL的反演性能,并揭示Telis测量能力的初步期望(例如,此外,臭氧(O 3),氯化氢(HCl),碳碳
摘要 目的。我们研究了最近引入的基于元学习的迁移学习技术是否可以提高脑机接口 (BCI) 在决策信心预测方面的性能,而传统机器学习方法则无法实现。方法。我们将偏向正则化算法的元学习应用于基于视频馈送的困难目标识别任务中,根据脑电图 (EEG) 和眼电图 (EOG) 数据逐个决策地预测决策信心的问题。该方法利用以前参与者的数据来生成预测算法,然后快速调整该算法以适应新参与者。我们将该方法与 BCI 中几乎普遍采用的传统单受试者训练、一种称为领域对抗神经网络的最先进的迁移学习技术、我们最近用于类似任务的零训练方法的迁移学习改编以及简单的基线算法进行了比较。主要结果。在大多数情况下,元学习方法明显优于其他方法,在只有来自新参与者的有限数据可用于训练/调整的情况下,效果要好得多。通过有偏正则化的元学习,我们的 BCI 能够无缝集成来自过去参与者的信息与来自特定用户的数据,以产生高性能预测器。它在小型训练集存在下的稳健性是 BCI 应用中的真正优势,因为新用户需要在更短的时间内训练 BCI。意义。由于 EEG/EOG 数据的多变性和噪声,BCI 通常需要使用来自特定参与者的数据进行训练。这项工作表明,使用我们的有偏正则化元学习版本可以获得更好的性能。
摘要典型相关分析 (CCA) 和偏最小二乘 (PLS) 是用于捕捉两种数据模态(例如大脑和行为)之间关联的强大多元方法。然而,当样本量类似于或小于数据中的变量数量时,标准 CCA 和 PLS 模型可能会过度拟合,即发现无法很好地推广到新数据的虚假关联。已经提出了 CCA 和 PLS 的降维和正则化扩展来解决此问题,但大多数使用这些方法的研究都有一些局限性。这项工作对最常见的 CCA/PLS 模型及其正则化变体进行了理论和实践介绍。我们研究了当样本量类似于或小于变量数量时标准 CCA 和 PLS 的局限性。我们讨论了降维和正则化技术如何解决这个问题,并解释了它们的主要优点和缺点。我们重点介绍了 CCA/PLS 分析框架的关键方面,包括优化模型的超参数和测试已识别的关联是否具有统计意义。我们将所描述的 CCA/PLS 模型应用于来自人类连接组计划和阿尔茨海默病神经成像计划的模拟数据和真实数据(n 均为 .500)。我们使用这些数据的低维和高维版本(即样本大小与变量之间的比率分别在 w 1 – 10 和 w 0.1 – 0.01 范围内)来展示数据维数对模型的影响。最后,我们总结了本教程的关键课程。