摘要 — 使用卡尔曼滤波器 (KF) 进行状态估计经常会遇到未知或经验确定的协方差矩阵,从而导致性能不佳。消除这些不确定性的解决方案正在向基于 KF 与深度学习方法混合的估计技术开放。事实上,从神经网络推断协方差矩阵会导致强制对称正定输出。在本文中,我们探索了一种新的循环神经网络 (RNN) 模型,该模型基于黎曼对称正定 (SPD) 流形的几何特性。为此,我们基于黎曼指数图定义了一个神经元函数,该函数取决于流形切线空间上的未知权重。这样,就推导出了一个黎曼成本函数,从而能够使用传统的高斯-牛顿算法将权重作为欧几里得参数进行学习。它涉及计算闭式雅可比矩阵。通过对模拟协方差数据集进行优化,我们展示了这种新方法对于 RNN 的可能性。
摘要 本文全面探讨了量子信息背景下的半正定规划 (SDP) 技术。它研究了凸优化、对偶和 SDP 公式的数学基础,为解决量子系统中的优化挑战提供了坚实的理论框架。通过利用这些工具,研究人员和从业者可以表征经典和量子相关性、优化量子态并设计高效的量子算法和协议。本文还讨论了实现方面,例如 SDP 求解器和建模工具,从而能够在量子信息处理中有效使用优化技术。本文提出的见解和方法已被证明有助于推动量子信息领域的发展,促进新型通信协议、自测试方法的开发以及对量子纠缠的更深入了解。
在处理脑电图或脑磁图记录时,许多监督预测任务是通过使用协方差矩阵来汇总信号来解决的。使用这些矩阵进行学习需要使用黎曼几何来解释它们的结构。在本文中,我们提出了一种处理协方差矩阵分布的新方法,并证明了其在 M/EEG 多元时间序列上的计算效率。更具体地说,我们定义了对称正定矩阵测度之间的 Sliced-Wasserstein 距离,该距离具有强大的理论保证。然后,我们利用它的属性和核方法将此距离应用于从 MEG 数据进行大脑年龄预测,并将其与基于黎曼几何的最新算法进行比较。最后,我们表明它是脑机接口应用领域自适应中 Wasserstein 距离的有效替代品。
摘要 正如标题所示,本章简要、独立地介绍了量子信息科学 (QIS) 中的五个基本问题,这些问题特别适合用半定程序 (SDP) 来表述。我们考虑了两类受众。主要受众包括运筹学 (和计算机科学) 研究生,他们熟悉 SDP,但发现即使对 QIS 的先决条件有一点点了解也令人望而生畏。第二类受众包括物理学家 (和电气工程师),他们已经熟悉通过 SDP 对 QIS 进行建模,但对更普遍适用的计算工具感兴趣。对于这两类受众,我们都力求快速获得不熟悉的材料。对于第一类受众,我们提供足够的必需背景材料(来自量子力学,通过矩阵处理,并将它们映射到狄拉克符号中),同时对于第二类受众,我们在 Jupyter 笔记本中通过计算重新创建已知的闭式解。我们希望您能喜欢这篇介绍,并通过自学或参加短期研讨会课程了解 SDP 和 QIS 之间的奇妙联系。最终,我们希望这种学科拓展能够通过对 SDP 的富有成果的研究推动 QIS 的发展。
用于解决量子线性系统 (QLS) 问题的量子算法是近年来研究最多的量子算法之一,其潜在应用包括解决计算上难以解决的微分方程和提高机器学习的速度。决定 QLS 求解器效率的一个基本参数是 κ,即系数矩阵 A 的条件数,因为自从 QLS 问题诞生以来,我们就知道,在最坏情况下,运行时间至少与 κ 呈线性关系 [1]。然而,对于正定矩阵的情况,经典算法可以求解线性系统,运行时间扩展为 √κ,与不确定的情况相比,这是一个二次改进。因此,很自然地会问 QLS 求解器是否可以获得类似的改进。在本文中,我们给出了否定的答案,表明当 A 为正定时,求解 QLS 也需要与 κ 呈线性关系的运行时间。然后,我们确定了可以规避此下限的正定 QLS 的广泛类别,并提出了两种新的量子算法,其特点是 κ 的二次加速:第一种基于有效实现 A − 1 的矩阵块编码,第二种构建形式为 A = LL † 的分解来预处理系统。这些方法适用范围广泛,并且都允许有效地解决 BQP 完全问题。