摘要 — 使用卡尔曼滤波器 (KF) 进行状态估计经常会遇到未知或经验确定的协方差矩阵,从而导致性能不佳。消除这些不确定性的解决方案正在向基于 KF 与深度学习方法混合的估计技术开放。事实上,从神经网络推断协方差矩阵会导致强制对称正定输出。在本文中,我们探索了一种新的循环神经网络 (RNN) 模型,该模型基于黎曼对称正定 (SPD) 流形的几何特性。为此,我们基于黎曼指数图定义了一个神经元函数,该函数取决于流形切线空间上的未知权重。这样,就推导出了一个黎曼成本函数,从而能够使用传统的高斯-牛顿算法将权重作为欧几里得参数进行学习。它涉及计算闭式雅可比矩阵。通过对模拟协方差数据集进行优化,我们展示了这种新方法对于 RNN 的可能性。
主要关键词