摘要 石榴石型固态电解质 (SSE) 因其高离子电导率、宽电化学窗口和显著的 (电) 化学稳定性而成为全固态锂 (Li) 电池的首选。然而,正极/石榴石界面差和正极负载普遍较低等棘手问题阻碍了它们的实际应用。在此,我们展示了通过放电等离子烧结构建增强正极/石榴石界面的方法,通过将 Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 (LLZTO) 电解质粉末和 LiCoO 2 /LLZTO 复合正极粉末直接共烧结成致密的双层,并以 5 wt% 的 Li 3 BO 3 作为烧结添加剂。具有 LiCoO 2 /LLZTO 交联结构的块状复合正极牢固地焊接到 LLZTO 层上,从而优化了锂离子和电子的传输。因此,一步集成烧结工艺实现了 3.9 Ω cm 2 (100 ◦ C) 的超低正极/石榴石界面电阻和高达 2.02 mAh cm −2 的高正极负载。此外,Li 3 BO 3 增强的 LiCoO 2 /LLZTO 界面还能有效减轻 LiCoO 2 的应变/应力,从而有助于实现卓越的循环稳定性。面积容量为 0.73 mAh cm −2 的块体型 Li|LLZTO|LiCoO 2 -LLZTO 全电池在 100 µ A cm −2 下经过 50 次循环后的容量保持率为 81.7%。此外,我们发现不均匀的锂沉积/剥离会导致间隙的形成,最终导致长期循环过程中锂和 LLZTO 电解质的分离,这成为大容量全电池中的主要容量衰减机制。这项工作深入了解了 Li/SSE 界面的退化,并提出了从根本上改善石榴石基全固态锂电池电化学性能的策略。
O3 型层状氧化物材料因其较高的容量而被视为最有前途的钠离子电池正极材料之一,然而,它们通常在高度脱钠状态下遭受结构损伤。为了获得稳定/高容量的 O3 型钠离子正极,成功制备了一系列富镍 O3 – Na[Ni x Fe y Mn 1-xy ]O 2 (x ¼ 0.6、0.7 和 0.8) 氧化物正极,并系统地研究了高压下的相变。结合电化学测量和结构表征,在2.0 – 4.2 V的电压范围内证明了Na+插层(脱)过程中从O3到O03、P3、O300相的结构转变。此外,揭示了高压容量衰减的几个原因:1)由于晶体结构中Na+较少导致高压相的热力学不稳定性;2)高压相演变过程中体积变化大,Na+扩散动力学较差;3)正极颗粒表面形成微裂纹和正极-电解质中间相。针对上述问题,我们设定了合理的截止电压4.0 V,避免了O3 00相的形成,减少了电解液的分解,获得了~152 mAh g 1 (~467 Wh kg 1 )的高可逆容量,在0.5C下经过200次循环后,容量保持率高达~84%,表现出了良好的储钠性能。这项研究为高性能富镍O3型钠离子正极的进一步发展提供了结构-性能关系方面的见解。
必须开发具有高容量电极和更环保、更经济高效的系统的高性能平面微电池,这对于为即将推出的智能小型便携式电子设备供电至关重要。为了满足这一需求,本研究以实现高容量阴极材料为中心。这涉及将聚苯胺和水预插入 V 2 O 5 纳米线以增强容量,并与平面设备结构中的 Zn 阳极结合使用以提高电荷存储性能。事实证明,所提出的直接策略不仅可以有效地将电荷存储容量从 235 mAh/g 提高到 200 mA/g 时的 384 mAh/g,还可以减少预激活过程。因此,所获得的具有高容量阴极的锌离子微电池不仅提供了 409 μ Ah/cm 2 的可观面积容量,而且还表现出显著的峰值面积能量密度和功率密度,分别为 306.7 μ Wh/cm 2 和 3.44 mW/cm 2。此外,微电池表现出缓慢的自放电电压响应,即使在 200 小时后仍能保持约 80% 的容量。这项工作提出了一种有效的策略来增强平面微电池的电化学性能,这对先进便携式电子产品的发展至关重要。
更广泛的背景 可充电电池仍然是便携式电子设备、混合动力电动汽车和电动汽车的限制组件,这促使人们开展研究以提高锂离子电池,特别是正极材料的能量密度、功率容量和安全性。此外,电能储存在应对全球变暖的全球战略中发挥着关键作用。对于电网储存应用,需要低成本、维护成本低且充放电循环寿命长的电池技术。在过去几年中,具有阳离子无序岩盐型结构的锂过渡金属氧化物已成为潜在的高能量密度正极。当制备过量的锂含量时,这些化合物可以成为合理的离子和电子导体,这一认识导致人们研究这种结构空间中的大量成分。目前,几种阳离子无序岩盐正极已经表现出非常高的比容量和高达 1000 W h kg 1 的能量密度,远远超过市售的层状锂过渡金属氧化物正极。阳离子无序的岩盐阴极也有望整合廉价且地球丰富的过渡金属物质,从而为大规模电力运输和电网存储应用提供更可持续的电池化学反应。
中国生产了所有锂离子电池的四分之三,拥有 70% 的正极产能和 85% 的负极产能(两者都是电池的关键部件)。超过一半的锂、钴和石墨加工和精炼产能位于中国。欧洲占全球电动汽车组装总量的四分之一以上,但除了 20% 的钴加工外,欧洲几乎没有其他供应链组成部分。美国在全球电动汽车电池供应链中的作用更小,仅占电动汽车产量的 10% 和电池产能的 7%。韩国和日本在原材料加工下游的供应链中占有相当大的份额,特别是在技术含量高的正极和负极材料生产方面。韩国占全球正极材料产能的 15%,而日本占正极材料产能的 14% 和负极材料产能的 11%。韩国和日本公司还参与生产其他电池部件,如隔膜。
电动汽车建议的正极化学成分 1)高镍正极 NMC/NCA 2)LFP 3)LiMn XO 2:高电压 4)硫:锂硫电池 5)氧气:空气电池-与燃料电池概念相同 6)其他金属氧化物/硫化物合成材料 7)复合转化化合物:有机化合物
是的。串联连接可让您使用两台 12V Safari UT 1300 组成 24V 系统。如果将三台串联在一起,将组成 36V 系统,四台串联在一起将组成 48V 系统。串联连接方法是将粗规格电线(4 号或更粗)从一个负极柱 (-) 连接到下一个电池的正极柱 (+),然后对每个电池重复此操作,从负极到正极,这样每个电池都连接到下一个电池。同样,如果您想增加 Ah,那么您可以将两个电池的正极柱连接到正极柱,负极柱连接到负极柱,从而将电池并联。这将使单个 105Ah UT 1300 变成 210Ah 系统。您可以通过这种方式将两个以上的电池连接在一起,将 Ah 增加到 210(2 块电池)到 315(3 块电池)到 420(4 块电池)。请参阅 www.lionenergy.com 上的在线 Safari UT 1300 用户手册中的图表。
近年来,钠离子电池 (SIBs) 因其丰富的地球资源、环境友好、成本低以及高能效而受到广泛关注。与锂离子电池相比,不断发展的先进正极在提高 SIB 性能方面发挥着关键作用。层状过渡金属氧化物 NaxMO2(M = Co、Mn、Fe、Ni 等)由于组成多变、活性中心丰富以及电化学性能良好而成为 SIB 有前途的正极之一。在这些层状过渡金属氧化物中,层状氧化锰基材料因锰无毒、前体价格便宜以及高容量而受到关注。为了提高 SIB 的性能,金属原子掺杂在层状正极中得到了广泛的研究。通过掺杂可以提高结构稳定性和容量保持率。
获得稳定且面容量超过 10 mA h cm − 2 的 S 正极是实现高能量密度配置的关键且不可或缺的步骤。然而,增加 S 正极的面容量往往会降低比容量和稳定性,这是由于厚电极中 S 的溶解加剧和可溶性多硫化物的扩散。本文报道了一种独立复合正极的设计,该正极利用 3D 共价结合位点和化学吸附环境来提供 S 物质的限制溶解和阻止扩散的功能。通过采用这种架构,纽扣电池表现出出色的循环稳定性和 1444.3 mA hg − 1(13 mA h cm − 2)的出色比容量,而软包电池配置表现出超过 11 mA h cm − 2 的显著面容量。这种性能与出色的柔韧性相结合,通过连续弯曲循环测试证明,即使在硫负载量为 9.00 mg cm − 2 的情况下也是如此。这项研究为开发具有更高负载能力和卓越性能的柔性 Li-S 电池奠定了基础。
近期电动汽车销量持续飙升,导致电动汽车电池材料供应链的循环性受到严格审查。创新的回收工艺或直接回收可以降低回收成本,是从报废 (EoL) 电动汽车电池中回收资源的一种可能解决方案。通过电化学方式将锂送回阴极或电化学再锂化是一种在直接回收过程中恢复 NMC 材料 (EoL) 锂含量的可能技术。这项研究为开发一种电化学再锂化方案提供了必要的理解,该方案将恢复通过锂库存损失 (LLI) 达到 EoL 的插层阴极材料的锂损失,而不是通过其他降解机制,如活性材料损失 (LAM)、阳离子混合或相变。已经制备并表征了电化学老化的 NMC 阴极材料,以确定 EoL 材料结构降解和锂损失的程度。使用基于模型的实验过程来确定最佳电化学再锂化方案,以最大限度地缩短再锂化 EoL 材料所需的时间并最大限度地提高锂的回收量。根据方案实现快速锂嵌入、保持 EoL 材料结构均匀性和完全恢复锂含量的能力对方案进行评估。利用新颖的扫描电压步骤,在高温下确定了最佳方案。