锌离子电池(ZIBs)因其成本低、安全性高、资源丰富等特点而受到广泛关注。然而,到目前为止,寻找具有高工作电位、优异电化学活性和良好结构稳定性的正极材料仍然存在挑战。为了应对这些挑战,人们广泛研究了微结构工程来调节正极材料的物理性质,从而提高了ZIBs的电化学性能。本文主要集中于各种ZIB正极材料的微结构工程的最新研究成果,包括成分和晶体结构选择、晶体缺陷工程、层间工程和形貌设计。进一步讨论了ZIB正极性能对水性电解质的依赖性。最后,提出了ZIB正极材料微结构工程的未来前景和挑战。旨在深入了解微结构工程对Zn 2 +的影响
摘要:通过溶胶-凝胶法制备了几种组合,包括 (1-xy) NaNi 0.7 Co 0.3 O 2 、xNa 2 MnO 3 和 yNaCoO 2 体系。已经应用化学计量的 NaNO 3 、Mn (Ac) 2 ∙4H 2 O、Co (Ac) 2 ⋅ 4H 2 O 和 Ni(NO 3 ) 2 ⋅ 6H 2 O 对 28 个样品进行了测试。我们证明,包括掺杂 Al 的 Na 1.5 Ni 0.117 Co 0.366 Al 0.017 Mn 0.5 O 2 在内的样品是 NIBT 中正极材料的最佳组成,因为该组合中的钴 (Co) 含量低于 NiCoO 2 。从 Co 使用成本和毒性的角度来看,这一点很重要。通过在2.0-4.0V范围内进行循环测试,分析了正极材料的充放电行为。结果表明,此类样品可以高效地消除Co不适合的缺点,也可以替代比Li更便宜的Na。
b' 对锂离子电池的技术需求快速增长,促使人们开发具有高能量密度、低成本和更高安全性的新型正极材料。高压尖晶石 LiNi 0.5 Mn 1.5 O 4 (LNMO) 是尚未商业化的最有前途的候选材料之一。这种材料的两个主要障碍是由于高工作电压导致的较差的电子电导率和全电池容量衰减快。通过系统地解决这些限制,我们成功开发出一种厚 LNMO 电极,面积容量负载高达 3 mAh \xe2\x8b\x85 cm 2 。优化的厚电极与纽扣电池和袋式电池级别的商用石墨阳极配对,在 300 次循环后,全电池容量保持率分别高达 72% 和 78%。我们将这种出色的循环稳定性归功于对电池组件和测试条件的精心优化,特别注重提高电子电导率和高压兼容性。这些结果表明,精确控制材料质量、电极结构和电解质优化很快就能支持基于厚 LNMO 阴极(> 4 mAh \xe2\x8b\x85 cm 2)的无钴电池系统的开发,这最终将满足下一代锂离子电池的需求,降低成本,提高安全性,并确保可持续性。'
1 北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京 100871,中国 2 北京金羽能源科技有限公司,北京 100095,中国 * 电子邮件:xychuan@pku.edu.cn a 作者对这项工作的贡献相同 收到日期:2020 年 3 月 3 日/接受日期:2020 年 4 月 26 日/发布日期:2020 年 6 月 10 日 水系锌离子电池(ZIB)因其优异的安全性、成本效益和环境友好性而被公认为大规模储能最有希望的候选材料之一。然而,由于合适正极材料的可用性有限,ZIB 的应用受到阻碍。在本工作中,通过模板辅助热分解制备了多孔管状 MoS 2,其中以(NH 4 ) 2 MoS 4 为前驱体,以天然埃洛石为模板。作为一种有前途的锌离子电池正极材料,所制备的 MoS 2 在 0.2 A g -1 时表现出良好的比容量 146.2 mAh g -1 ,并且具有优异的循环性能,800 次循环后容量保持率为 74.0%。此外,所提出的 MoS 2 即使在 1 A g -1 时也表现出良好的倍率性能。这项工作为锌离子电池提供了一种有前途的正极材料,并为其未来在可再生能源存储中的应用开辟了新的可能性。关键词:MoS 2;热分解;埃洛石模板;正极;水系锌离子电池。1. 引言
b'片上微型超级电容器(MSC)是最有前途的器件之一,可集成到微/纳米级电子设备中以提供足够的峰值功率和能量支持。然而,较低的工作电压和有限的能量密度极大地限制了它们更广泛的实际应用。在此,设计了基于Ti3C2TxMXene作为负极、活性炭作为正极的高压片上MSC,并通过一种新颖的切割喷涂法简单地制造了它。通过解决MXene的过度极化,单个非对称片上MSC可以在中性电解质(PVA / Na2SO4)中提供高达1.6V的电位窗口,并具有7.8 mF cm2的高面积电容(堆栈比电容为36.5 F cm3)和大大提高的能量密度3.5 mWh cm3在功率密度为100 mW cm3时,这远远高于其他片上储能产品。此外,MSC 表现出优异的容量保持率(10,000 次循环后仍保持 91.4%)。更重要的是,MSC 可以轻松扩大为硅晶片上串联和/或并联的高度集成阵列。显然,这项研究为开发用于片上电子产品和便携式设备的高压 MXene 基 MSC 开辟了新途径。'
摘要:我们利用飞行时间二次离子质谱 (TOF-SIMS) 和 X 射线光电子能谱 (XPS) 结合电化学技术对循环高镍(LiNi 1-x M x O 2 ,M = 金属)、富锂(Li 1+x Mn y M 1-xy O 2)和高压尖晶石(LiMn 1.5 Ni 0.5 O 4 )电极进行了全面研究,以更好地了解它们在循环过程中阴极-电解质中间相 (CEI) 结构的变化。TOF-SIMS 提供有关每个电极表面膜含量的碎片特定信息。高镍正极显示出厚的表面膜,最初含有 Li 2 CO 3,随后在循环过程中形成氧化有机碳酸盐。富锂电极表面膜在首次活化循环期间会形成强特性,其中释放的 O 2 会氧化有机碳酸酯形成聚合碳并分解 LiPF 6 。高压尖晶石电极在标准电解质稳定性窗口之外运行,产生活性氧化电解质物质,进一步分解 LiPF 6 。通过 TOF-SIMS 测量这些不同化学碎片的分布和浓度,最终通过循环高镍、富锂和高压尖晶石电极的彩色高分辨率图像进行总结。
锂离子电池因具有较高的能量密度和较长的循环寿命,被广泛应用于便携式电子设备、电动汽车和大型储能装置中。目前,商业化锂离子电池主要采用循环稳定性高的插层型锂储能材料作为正极和负极材料。然而,插层型正极材料如LiFePO 4 、LiMnO 4 、LiCoO 2 等理论容量低(< 200 mAh·g−1),不能满足日益增长的高能量密度需求。以非插层型锂储能材料为代表的锂硫(Li-S)电池具有很高的能量密度(2600 W·h·kg−1),是目前商业化锂离子电池的8倍以上[1,2],被认为是最有前途的高能量密度二次电池之一。硫及其完全锂化状态的 Li 2 S 均可用作 Li-S 电池的活性正极材料。硫基复合正极应与锂金属或含锂负极结合。低电子和离子电导率是元素硫的固有特性,
在高电荷状态下缺乏结构稳定性,需要较低的放电截止电压才能获得足够的容量。[5] 相比之下,多聚阴离子化合物通常具有三维稳健框架,与层状氧化物相比,可提供更好的循环稳定性和更平坦的电压曲线。此外,由于多聚阴离子基团(如(PO 4 ) 3 − 、(P 2 O 7 ) 4 − 和(SO 4 ) 2 − )的诱导效应,可以获得更高的工作电压,[6] 使这些化合物成为稳定、高能量密度钠离子电池正极材料的有趣候选者。研究最多的多聚阴离子钠离子正极材料是含钒磷酸盐 Na 3 V 2 (PO 4 ) 3 (NVP)[7,8] 和氟磷酸盐 Na 3 V 2 (PO 4 ) 2 F 3 (NVPF)。 [9] NVPF 在 3.9 V 时的理论容量为 128 mAh g −1(每个分子式单位 2 个电子),比能达到 500 Wh kg −1。此外,可以通过用 O 取代 F 阴离子来调节 NVPF 的电化学性能,形成完全固溶体 Na 3 V 2 (PO 4 ) 2 F 3 − 2 y O 2 y(0 ≤ y ≤ 1)。[10] 例如,Bianchini 等人。表明,在低压端,可以将额外的Na插入Na3V2(PO4)2O2F中,放电时产生Na4V2(PO4)2O2F,这使得Na4V2(PO4)2O2F和NaV2(PO4)2O2F之间可以进行三电子循环。[11]然而,从NaV2(PO4)2F3到V2(PO4)2F3中提取第三个Na尚未被证明是可行的,因为Na提取电位很高(预计为≈4.9V),超出了有机钠离子电解质的稳定窗口。[12]为了降低这种高的Na提取电压,人们考虑使用阳离子替代;然而,只有少数金属阳离子(例如Al)可以取代NVPF结构中的V,其溶解度限制在0.2。[11,13]
更广泛的背景 可充电电池仍然是便携式电子设备、混合动力电动汽车和电动汽车的限制组件,这促使人们开展研究以提高锂离子电池,特别是正极材料的能量密度、功率容量和安全性。此外,电能储存在应对全球变暖的全球战略中发挥着关键作用。对于电网储存应用,需要低成本、维护成本低且充放电循环寿命长的电池技术。在过去几年中,具有阳离子无序岩盐型结构的锂过渡金属氧化物已成为潜在的高能量密度正极。当制备过量的锂含量时,这些化合物可以成为合理的离子和电子导体,这一认识导致人们研究这种结构空间中的大量成分。目前,几种阳离子无序岩盐正极已经表现出非常高的比容量和高达 1000 W h kg 1 的能量密度,远远超过市售的层状锂过渡金属氧化物正极。阳离子无序的岩盐阴极也有望整合廉价且地球丰富的过渡金属物质,从而为大规模电力运输和电网存储应用提供更可持续的电池化学反应。