ICL7103A/ICL8052A A/D 转换器的基本电路保持不变。但是,需要进行一些修改以适应 100mV 参考。首先,修改参考电压分压器网络 (5.1k、1k) 以获得更高的分辨率。其次,将积分器电阻减小到 10k ,以便在 V IN = 200mV 时实现大约 8V 的积分器摆幅。第三,应使用 300k 电位器替换比较器转换网络中的 300k 固定电阻。当 V IN = 0V 时,应调整此电位器,直到显示屏读取相等间隔的正负符号。在自动归零期间,此网络将比较器输出提升至 ICL7103A 逻辑的阈值。连接在积分器电容上的两个 JFET 在严重超量程情况下保持积分器和自动归零电容的完整性。
摘要 量子点发光器件已成为显示应用的重要技术。它们的发射是分别通过空穴和电子导电层传输的正负电荷载流子复合的结果。这些器件中电子或空穴传输材料的选择不仅要求层间能级对齐,而且还要求平衡电子和空穴向复合位点的流动。在这项工作中,我们研究了一种通过控制电荷载流子动力学来优化器件的方法。我们采用阻抗谱来检查电荷载流子通过每一层的迁移率。得出的迁移率值提供了一条路径来估算每个电荷载流子向发光层的跃迁时间。我们认为,当两个电荷载流子向有源层的跃迁时间相似时,可以获得最佳器件结构。最后,我们通过重点优化电子传输层的厚度来检验我们的假设。
量子信息科学 (QIS) 的快速发展为探索基础物理学开辟了新途径。量子非局域性是区分量子信息与经典信息的一个关键方面,它已在粒子衰变中通过违反贝尔型不等式进行了广泛的研究。尽管取得了这些进展,但仍然缺乏基于量子信息理论的粒子相互作用综合框架。为了弥补这一差距,我们引入了自旋 1/2 超子衰变过程的广义量子测量描述。我们通过将该方法与已建立的理论计算相结合来验证该方法,并将其应用于相关 Λ ¯ Λ 对的联合衰变。我们使用量子模拟来观察超子衰变中 CHSH 不等式的违反。我们的广义测量描述具有适应性,可以扩展到各种高能过程,包括北京正负电子对撞机 (BEPC) 的北京光谱仪 III (BESIII) 实验中的矢量介子衰变 J/ψ、ψ (2 S ) → Λ ¯ Λ 。本研究开发的方法可应用于基本相互作用中的量子关联和信息处理。
LM35 系列是精密集成电路温度传感器,其输出电压与摄氏 (Centigrade) 温度成线性比例。因此,LM35 比以 ˚ 开尔文校准的线性温度传感器更具优势,因为用户无需从其输出中减去较大的恒定电压即可获得方便的摄氏度缩放。LM35 不需要任何外部校准或微调,即可在室温下提供 ± 1 ⁄ 4 ˚C 的典型精度,在 −55 至 +150˚C 的整个温度范围内提供 ± 3 ⁄ 4 ˚C 的典型精度。通过在晶圆级进行微调和校准可确保低成本。LM35 的低输出阻抗、线性输出和精确的固有校准使与读出或控制电路的接口特别容易。它可与单电源或正负电源一起使用。由于它仅从电源中吸取 60 µA 的电流,因此自热非常低,在静止空气中低于 0.1˚C。LM35 的额定工作温度范围为 −55˚ 至 +150˚C,而 LM35C 的额定工作温度范围为 −40˚ 至 +110˚C(−10˚ 精度更高)。LM35 系列提供包装
为了减少 BCI 用户在执行无风险任务(例如在训练和游戏中)时的挫败感,我们建议通过虚构输入(系统生成的积极任务结果)来提高他们的感知控制水平。两项替代 BCI 研究注入了虚构输入,为 50% 基线创造了额外的积极任务结果。与 50% 基线相比,用户的感知控制显着增加。反过来,挫败感水平下降。虚构输入在游戏故事环境中同样有效,游戏故事环境为主角的成功提供了情感上的支持,而更简单的任务则缺乏这种激励。人们在任务期间的输入尝试次数比我们控制的正负任务结果比率更能决定感知控制。用户输入尝试和随后的虚构输入之间的延迟进一步缓和了他们的感知控制。
本研究的目的是了解生成人工智能 (AI) 工具如何可能对信息技术领域造成积极和消极影响。尽管之前的研究对人工智能对 IT 领域的多种影响提出了有价值的观点,但很少有人关注研究生成人工智能工具如何在 IT 领域带来不利和有益的影响。为了填补这一研究空白,本研究采用了一项定量研究来衡量生成人工智能工具如何可能对信息技术领域造成积极和消极影响。数据是通过 2024 年 3 月 1 日至 2024 年 4 月 1 日期间在 LinkedIn 上开展的一项调查收集的。调查的目标人群是大学讲师和 IT 领域的专业人士。共有 52 名参与者完成了调查。研究结果表明,IT 专业人士和教育工作者对使用人工智能工具的看法存在显著的正负关系。本研究为旨在研究使用人工智能工具的积极和消极影响的理论做出了贡献。关键词:人工智能(AI)、影响评估、AI采用和创新、数据安全和隐私、自动化风险、技术进步
神经网络的集体行为取决于神经元的细胞和突触特性。相位响应曲线 (PRC) 是一种可通过实验获得的细胞特性测量方法,它量化了神经元的下一个尖峰时间的变化,该变化与刺激传递到该神经元的相位有关。神经元 PRC 可分为纯正值 (I 型) 或具有不同的正负区域 (II 型)。1 型 PRC 网络往往不会通过相互兴奋的突触连接进行同步。我们研究了相同的 I 型和 II 型神经元的同步特性,假设突触是单向的。通过对扩展的 Kuramoto 模型进行线性稳定性分析和数值模拟,我们表明前馈环路基序有利于 I 型兴奋和抑制神经元的同步,而反馈环路基序则破坏了它们的同步趋势。此外,大型有向网络(没有反馈基序或有许多反馈基序)已从相同的无向主干构建,并且对于具有 I 型神经元的有向无环图观察到高同步水平。结果表明,I 型神经元的同步性取决于网络连接的方向性和其无向主干的拓扑结构。前馈基序的丰富性增强了有向无环图的同步性。
LM35/LM35A/LM35C/LM35CA/LM35D 精密摄氏温度传感器概述 LM35 系列是精密集成电路温度传感器,其输出电压与摄氏 (Centigrade) 温度成线性比例。因此,LM35 比以 § 开尔文校准的线性温度传感器更具优势,因为用户无需从其输出中减去较大的恒定电压即可获得方便的摄氏刻度。 LM35 不需要任何外部校准或调整即可提供室温下 g (/4 § C 的典型精度和 b 55 至 a 150 § C 整个温度范围内 g */4 § C 的典型精度。晶圆级调整和校准可确保低成本。LM35 的低输出阻抗、线性输出和精确的固有校准使与读出或控制电路的接口特别容易。它可与单电源或正负电源一起使用。由于它仅从电源吸取 60 m A,因此自热非常低,在静止空气中低于 0.1 § C。LM35 的额定工作温度范围为 ab 55 § 至 150 § C,而 LM35C 的额定工作温度范围为 ab 40 § 至 110 § C(b 10 § 具有改进的精度)。LM35 系列是
LM35/LM35A/LM35C/LM35CA/LM35D 精密摄氏温度传感器概述 LM35 系列是精密集成电路温度传感器,其输出电压与摄氏 (Centigrade) 温度成线性比例。因此,LM35 比以 § 开尔文校准的线性温度传感器更具优势,因为用户无需从其输出中减去较大的恒定电压即可获得方便的摄氏刻度。 LM35 不需要任何外部校准或调整即可提供室温下 g (/4 § C 的典型精度和 b 55 至 a 150 § C 整个温度范围内 g */4 § C 的典型精度。晶圆级调整和校准可确保低成本。LM35 的低输出阻抗、线性输出和精确的固有校准使与读出或控制电路的接口特别容易。它可与单电源或正负电源一起使用。由于它仅从电源吸取 60 m A,因此自热非常低,在静止空气中低于 0.1 § C。LM35 的额定工作温度范围为 ab 55 § 至 150 § C,而 LM35C 的额定工作温度范围为 ab 40 § 至 110 § C(b 10 § 具有改进的精度)。LM35 系列是
LM35 系列是精密集成电路温度传感器,其输出电压与摄氏 (Centigrade) 温度成线性比例。因此,LM35 比以 ˚ 开尔文校准的线性温度传感器更具优势,因为用户无需从其输出中减去较大的恒定电压即可获得方便的摄氏度缩放。LM35 不需要任何外部校准或微调即可提供室温下 ± 1 ⁄ 4 ˚C 的典型精度以及整个 −55 至 +150˚C 温度范围内 ± 3 ⁄ 4 ˚C 的典型精度。通过晶圆级微调和校准可确保低成本。LM35 的低输出阻抗、线性输出和精确的固有校准使与读出或控制电路的接口特别容易。它可与单电源或正负电源一起使用。由于它仅从电源中吸取 60 µA 的电流,因此自热非常低,在静止空气中低于 0.1˚C。LM35 的额定工作温度范围为 −55˚ 至 +150˚C,而 LM35C 的额定工作温度范围为 −40˚ 至 +110˚C(−10˚ 精度更高)。LM35 系列提供包装