量子振荡现象是理解量子物质电子结构的重要工具。本文我们系统地研究了天然石墨中电子比热容 C el 的量子振荡。我们发现,单个自旋朗道能级与费米能级的交叉产生了双峰结构,这与 Lifshitz-Kosevich 理论预期的单峰形成鲜明对比。有趣的是,双峰结构是由自由电子理论中 C el / T 的核心项预测的。C el / T 代表宽度为 4.8 k BT 的光谱音叉,可以随意调谐至共振。使用巧合法,双峰结构可用于准确确定量子材料的朗德 g 因子。更一般地,音叉可用于揭示由磁场调谐的费米子态密度中的任何峰,例如重费米子化合物中的 Lifshitz 跃迁。
这种空间的体积如此之小,分析物分子的数量正在减少,需要单分子水平的检测方法。特别是,单个非荧光分子的检测非常重要,因为大多数分子没有荧光。相反,我们开发了用于灵敏检测非荧光分子的热透镜显微镜 (TLM),并实现了在 7 fL 中测定 0.4 个分子的浓度 [1] 和使用紫外激发激光计数单个大型生物分子 (λ-DNA) [2]。然而,由于光学背景较大,这是基于 TLM 原理的一个问题,因此无法实现蛋白质等小分子的计数。因此,我们通过引入微分干涉对比 (DIC) 显微镜的原理开发了微分干涉对比热透镜显微镜 (DIC-TLM) 以实现无背景检测。到目前为止,DIC-TLM 可以实现对单个非荧光分子的检测 [3],而之前的 DIC-TLM 使用可见光激发,无法检测在紫外线范围内有吸收的生物分子。本文开发了一种新型紫外激发DIC-TLM(UV-DIC-TLM)用于检测单个蛋白质分子。具体而言,设计了用于紫外激发的DIC棱镜和显微镜等光学元件,验证了UV-DIC-TLM的原理并评估了其性能。
这种空间的体积如此之小,分析物分子的数量正在减少,需要单分子水平的检测方法。特别是,单个非荧光分子的检测非常重要,因为大多数分子没有荧光。相反,我们开发了用于灵敏检测非荧光分子的热透镜显微镜 (TLM),并实现了在 7 fL 中测定 0.4 个分子的浓度 [1] 和使用紫外激发激光计数单个大型生物分子 (λ-DNA) [2]。然而,由于光学背景较大,这是基于 TLM 原理的一个问题,因此无法实现蛋白质等小分子的计数。因此,我们通过引入微分干涉对比 (DIC) 显微镜的原理开发了微分干涉对比热透镜显微镜 (DIC-TLM) 以实现无背景检测。到目前为止,DIC-TLM 可以实现对单个非荧光分子的检测 [3],而之前的 DIC-TLM 使用可见光激发,无法检测在紫外线范围内有吸收的生物分子。本文开发了一种新型紫外激发DIC-TLM(UV-DIC-TLM)用于检测单个蛋白质分子。具体而言,设计了用于紫外激发的DIC棱镜和显微镜等光学元件,验证了UV-DIC-TLM的原理并评估了其性能。
研究了废推进剂浸渍的耐火粘土砖样品在不同推进剂百分比、温度扫描和推进剂百分比下的热导率、热扩散率和比热的变化。将 0.0%、2.5%、5.0% 和 7.5% 重量的推进剂添加到砖坯中,并对直径为 12.6+0.1 毫米、厚度为 2-3 毫米的样品进行水平和垂直方向的烘烤。使用激光闪光技术从 30oC 到 100oC 进行温度扫描,以表征砖的热扩散率和比热。推进剂浸渍重量越高,热扩散率越低,比热容越大,热导率越低。对于相同的 7.5% 推进剂浸渍砖,垂直烘烤比水平烘烤具有更好的隔热性能。观察到参考砖的平均热导率是 0.7 W/mK。砖块中 7.5% 重量的推进剂浸渍可能导致垂直烘烤期间的热导率低于 0.5 W/mK。这种大幅减少无疑为建筑带来了绝缘解决方案,并带来了环保的处理解决方案。
摘要。热能存储 (TES) 系统已广泛应用于聚光太阳能发电 (CSP) 电厂,以确保系统效率。本研究利用具有优异热特性的电解铜粉 (ECP)、氧化石墨烯 (GO) 和铅冶炼渣 (LSS) 骨料(一种采矿废料),旨在制造冶金土聚物材料作为 TES 系统中的存储介质。本文研究了 ECP 含量(0、5%、10%、15%、20%)对掺有 LSS 骨料的 GO 工程土聚物混合物的强度、比热、热导率和热稳定性的影响。加入 10% 的 ECP 后,流速和抗压强度显著提高。增加 ECP 含量会提高土聚物的热导率,但会降低土聚物的比热。结果表明,ECP 是一种很有前途的成分,可以加入土聚物中以增强其物理机械特性和热稳定性。 ECP、GO和LSS相结合生产用于TES系统的土工聚合物材料可以为CSP工厂和行业废物回收提供环保解决方案。
纳米级界面能量耦合的重要性日益凸显,这与微纳电子学的快速发展相一致。纳米级界面热阻 (ITR) 受温度影响很大,但由于纳米级表征的极端挑战,迄今为止人们对其了解甚少。这项工作报告了一项开创性的高水平研究,研究了温度如何影响横向尺寸 < 8 纳米的单壁碳纳米管 (SWCNT)-SiO 2 界面的 ITR。从 297 到 77 K,ITR 从 530 增加到 725 到 (1.56 – 1.74) × 10 4 K ⋅ m ⋅ W − 1。报道的室温下 ITR 与 SWCNT/SiO 2 界面的数据一致。将 ITR 随温度的变化与基于声子漫射失配模型 (DMM) 的预测进行了比较。然而,在线性色散的德拜近似下,DMM 低估了 ITR,因此观察到了很好的定性一致性。我们对温度的 ITR 依赖性采取 T − n 的形式,其中对于样品的两个不同位置,n 分别为 2.4 和 2.56。这种观察结果类似于远低于德拜温度时比热对温度的依赖性。我们引入了一个称为有效界面能量传输速度 (vi,eff) 的概念,试图排除比热在 ITR 温度依赖性中的作用,以揭示温度对界面能量耦合的固有影响。非常有趣的是,对于报告的各种界面,vi,eff 在很宽的温度范围内变化很小。预计在未来的研究工作中将进一步探索和完善这一概念。
热力学基本原理、相共存、吉布斯相律和相图 理想气体状态方程和范德华理论的扩展 朗道理论和振动原理(金兹堡-朗道) 理想气体、晶格气体的统计理论和气体与固体合金热力学性质的常规溶液理论。 应力张量的统计力学:维里尔公式 量子谐振子的统计和固体的比热 自旋统计:顺磁性和铁磁性,铁磁性的平均场近似
使用固体颗粒作为传热液(HTF)具有克服商业浓缩太阳能(CSP)植物中缺点的巨大潜力。固体颗粒热量储存(TES)系统允许从材料的角度从高温和低成本中实现高热性能。高温下基于CSP固体颗粒系统的转化效率在很大程度上取决于用作HTF和存储培养基的材料的光学特性和热物理性能。本研究旨在提供更多的实验数据和证据,证明使用颗粒固体进行CSP应用。在750ºC和900ºC下不同的老化时间后,研究了碳化硅(SIC),硅砂(SiO 2)和赤铁矿(Fe 2 O 3)的硅(Sio 2)和赤铁矿(Fe 2 O 3)的比热容量。太阳能吸收率在衰老过程中略有增加,除了二氧化硅砂,在最初的100小时内降低了其吸收性,达到了高原。在老化治疗后,SIC和二氧化硅砂的比热容量增加。但是,对于氧化铁,衰老后的特异性热容量较低。黑色硅碳化物SIC被证明是最高900ºC的最佳选择,因为它显示出最高的太阳能吸收率(96%)和最高的热量存储能力。关键字:太阳吸收;浓缩太阳能(CSP);固体颗粒,热能