在气体绝缘开关设备(GIS)中检测SF 6绝缘气体分解成分对于评估GIS操作状态和确保设备安全至关重要。在这项研究中,我们使用密度功能理论(DFT)计算探索了SF 6主要分解产物(SO 2,SOF 2和SO 2 F 2)的吸附。研究了PTN 3 -GN表面上三个吸附气体的吸附结构,能量和电荷转移。气体吸附结果表明,PTN 3 -GN对于这些气体分子具有较高的吸附能力,并且吸附能分别为-2.55,-2.54和-3.54 eV。探索气体分子与PTN 3 -GN结构之间的相互作用机制,比较和分析气体吸附之前和之后系统状态的总和和部分密度。PTN 3 -GN与气体分子强烈相互作用,导致PT掺杂剂和气体分子之间的高轨道杂交。PTN 3 -GN对于气体分子具有良好的吸附性能,并且在GIS分解成分检测和故障诊断中具有良好的应用前景。
温室气体(GHG)由几种气体组成,其中最重要的是二氧化碳(CO 2 )、甲烷(CH 4 )和一氧化二氮(N 2 O)。要了解这些气体对气候变化的影响,必须考虑辐射强迫的概念,它指的是气体通过在大气中捕获热量来影响地球能量预算的能力。辐射强迫以辐射功率来衡量,辐射功率是单位面积辐射的能量,以及气体分子在大气中的平均停留时间(IPCC,2007)。辐射功率是气体在大气中保留热量的能力。该参数衡量的是单位质量温室气体相对于二氧化碳的变暖效应。例如,甲烷(CH4)虽然在大气中的含量较少,但其变暖潜能值却比二氧化碳高得多。平均停留时间是指气体分子在被海洋吸收或化学降解等自然过程清除之前在大气中停留的平均时间长度。停留时间较长的气体对气候的影响持续时间更长。例如,一氧化二氮(N2O)的平均停留时间比二氧化碳长得多,这使其对气候变化尤其造成问题。全球变暖潜能值 (GWP) 结合了这两个因素,可以比较衡量不同温室气体的长期影响。 GWP 以千克二氧化碳当量 (kg CO2 -Eq) 表示。这样就可以在共同的基础上比较不同气体的加热效果。例如,甲烷在100年内的GWP约为二氧化碳的28-36倍,这意味着1公斤甲烷与28-36公斤二氧化碳具有相同的变暖效应。这个参数对于确定
现代加速器首选非侵入式测量方法来表征束流参数。电离轮廓监测器 (IPM) [1–3] 和束流诱导荧光监测器 (BIF) [4–8] 被广泛用作许多加速器中的非侵入式束流轮廓监测器。在此类监测器中,粒子束与残留气体相互作用,导致气体分子电离或发射荧光。束流与气体相互作用产生的副产物可以通过外部电磁场(离子和电子)收集,或使用独立光学系统(荧光)检测,以提供初级束流的一维分布信息。根据背景压力水平,它们通常需要较长的积分时间或加载额外的工作气体。后者将产生较大的压力凸起区域,并可能导致初级束流性能下降
薪酬最高组别 13 TVöD Bund ○ 全职(每周 39 小时) ○ 固定期限合同 工作地点为德国汉诺威。 您的任务: QUEST 实验量子计量研究所是汉诺威莱布尼茨大学和不伦瑞克 PTB 的联合机构。在量子逻辑光谱研究小组中,我们致力于捕获和激光冷却的原子和分子离子的精密光谱学。捕获离子的量子控制是开发容错可编程量子计算机的最先进方法之一。基于离子阱芯片技术与微波控制相结合,将构建一个 50 量子比特的系统。这将涵盖整个系统的所有方面。较长的离子存储时间(受与背景气体分子碰撞的限制)是操作量子计算机的基本要求。 您的任务将包括:
产生的峰值功率密度和电流比射频或交流电源驱动的冷等离子体射流高出两到三个数量级。HiPIPS 使用变压等离子体射流和高功率脉冲直流发电机,可在短脉冲中提供极高的功率密度。当气体前体被送入等离子体源并在电极上施加负高压直流脉冲时,电流以电子的形式流过气态介质。自由电子被加速并与气体分子碰撞,将其分解以产生活性物质。随着直流脉冲的持续,电流急剧增加。由于先进电源设计的高电流能力,极高的功率会迅速激发等离子体。这种高功率放电会产生高度电离的气体以及大量的自由基。当脉冲放电快速接近电弧状态时,控制脉冲长度可抑制电弧,从而实现连续稳定的运行。
目的:脱发会显着影响患者的外观和心理学,药理学疗法和毛发种植园是脱发的主要治疗方法,但两者都有局限性。本综述旨在总结促进头发生长和再生的非药物疗法。患者和方法:这是一项非系统评价。在1997年至2024年之间搜索了多个数据库。搜索和筛选遵循PRISMA指南。结果:新型的治疗方式,例如气体分子,富含血小板的血浆,激光和微对侧,可以改变毛囊的微环境,激活毛囊干细胞,并促进毛发生长和再生。结论:本文回顾了有关非药物疗法在脱发治疗和毛发再生中应用的研究,以期为未来的脱发治疗研究和术后对患者的术后治疗提供重要的基础。关键词:脱发,头发再生,非药物,气体疗法,再生性细胞疗法,激光治疗,微对疗法
金属氧化物气体传感器是流行的化学主义传感器。它们用于许多任务,包括Envi Ronmental和安全监控。一些气体感应材料具有光诱导的特性,可通过在光照射时修饰传感器的选择性和灵敏度来增强气体检测。在这里,我们介绍了高度纳米孔Cu 2 o薄膜的气体传感特性,朝向电取(第2号)和亲核(C 2 H 5 OH,NH 3)在环境温度下的气体分子,并通过可见的光照明不同颜色的光照明(红色:632 Nm,Green:530 Nm,blue,blue:468 nm)。Cu 2 O膜是通过反应性高级气体沉积(AGD)技术制造的。样品的表面和结构分析证实了混合氧化铜相的纳米多孔薄膜的沉积。Cu 2 O的气体传感性能在亲电和亲核气体暴露时表现出预期的P型半导体行为。我们的结果表明,可见光照明提供了增强的传感器响应。
石墨烯是具有非凡的电子1-5和机械性能的零带隙半学。6由单层碳组成,每个原子在其表面上,石墨烯是纯粹的二维材料,也是用于化学蒸气传感器的理想候选者。据报道,单个气体分子在石墨烯传感器表面的吸收会导致其电阻的可检测变化。7然而,众所周知,典型的纳米光刻过程可以在石墨烯8上留下不受控制的残留物,该残基对设备传输和蒸气感应特性的影响尚未得到充分探索。此外,只能通过使用样品来确定石墨烯对气体蒸气的固有灵敏度,这些样品已经得到了光刻处理中的污染并进行了验证。石墨烯蒸气传感器应像(生物)分子表面修饰(生物)分子表面修饰以控制其化学敏感性一样,就像对碳纳米管9和半导体纳米线菌所做的那样。10他们还应允许对其传感器特性进行定量建模。11
聚合物13,15 - 17和二维材料(2D),例如MOS 2。18 - 21最近,人们对包括MXENES在内的2D材料的研究引起了很多兴趣,因为它们具有高表面积与体积比,依赖层可调的机械,电气,光学和物理化学性质,其量子构成以及低维度效果。22 - 24在这些2D材料中,由于其出色的机械性能,高载流子迁移率以及出色的电气和光学性能,因此广泛探索了基于石墨烯和过渡金属二甲化合物(TMDS)的气体传感器。尽管具有出色的传感器响应和响应时间,但基于石墨烯的2号传感器与长期恢复时间相关,而基于TMD的传感器由于其高吸附而导致的不完整恢复。25这种限制促使研究人员探索包括MXENES在内的其他2D材料。气体分子与传感材料的相互作用是任何气体感应过程的不可限制的特征。最近,由于MXENE的几个优势,基于MXENE的气体传感器受到了很多关注。此外,他们已经在电化学储能设备,良好的电器设备等中显示了应用程序的应用。