摘要:基于车辆动态模型 (VDM) 的导航性能在很大程度上取决于先验未知的气动系数的准确确定。在模型模拟或风洞实验分析等不同技术中,通过有利于全球导航卫星系统 (GNSS) 定位的状态空间增强进行自校准的方法是一种有趣且经济的替代方案。我们在模拟下研究这种技术,目的是确定飞机机动对气动系数之间以及与其他误差状态的精度和(去)相关性的影响。不同机动的组合表明对于获得令人满意的气动系数估计并减少其不确定性至关重要。
摘要:基于车辆动态模型 (VDM) 的导航性能在很大程度上取决于先验未知的气动系数的准确确定。在不同的技术中,例如模型模拟或风洞中的实验分析,通过有利于全球导航卫星系统 (GNSS) 定位的状态空间增强进行自校准的方法是一种有趣且经济的替代方案。我们在模拟下研究这种技术,目的是确定飞机机动对气动系数之间以及与其他误差状态的精度和(去)相关性的影响。不同机动的组合表明对于获得令人满意的气动系数估计并减少其不确定性至关重要。
摘要 — 考虑到机械系统动力学分析的多体方法,本文旨在构建一个简单的计算机模型来描述执行纵向运动的固定翼飞机的动力学。为此,分析了一种简化的飞行器模型,该模型没有控制面,具有轴向推力,并且空气动力学作用有限。然后使用 Digital DATCOM 软件对气动系数进行建模,同时将升降舵也视为控制面。首先,在多体动力学的背景下研究飞机动力学。然后,分析了被视为本文示例的案例研究,即 Cessna 172 Skyhawk 飞机。通过对外部施加的作用和气动系数进行建模,随后分析了飞行起飞阶段背后的基本力学。在本文中,使用拉格朗日公式方法驱动描述示例动态行为的运动方程。然后在 MATLAB 环境中构建的计算机代码中实现了示例的动态模型。通过这样做,该过程的目标是尽可能准确地开发 Cessna 172 Skyhawk 飞机的虚拟模型。如本文使用数值模拟所示,本文分析的案例研究的计算机模型能够模拟
生成气动数据库 (AEDB) 是 RLV 乃至整个航空航天飞行器开发中的一个重要方面,该数据库可描述飞行器的气动飞行品质。这些数据库通常通过简单的启发式模型从计算流体力学 (CFD) 模拟和风洞试验 (WTT) 中汇总而成。虽然这种经典方法适用于估算标称气动系数,但量化这些飞行前数据相对于最终飞行行为的不确定性仍然是一项艰巨的任务,需要大量的人类专业知识和“直觉”。然而,特别是对于运载火箭而言,这些不确定性对于确保稳健的制导和控制算法以及满足所选任务概况的飞行器性能至关重要。
表 1.1:先锋 RQ-2 规格 ...................................................................................... 3 表 2.1 飞机平移和旋转运动的 12 个状态 ........................................................ 6 表 2.2 先锋 Rpv 稳定性和系数 ........................................................................ 8 表 2.3:6DOF 机身四元数块端口描述 [6] ...................................................... 16 表 3.1 平飞条件下的配平参数 ............................................................................. 21 表 3.2 反馈增益值 ............................................................................................. 26 表 5.1 由于升降舵偏转和攻角引起的升力系数 ............................................................. 33 表 5.2 由于升降舵偏转和攻角引起的阻力系数 ............................................................. 34 表 5.3 由于方向舵偏转和侧滑角引起的侧向力系数 ............................................................. 35 表 5.4 由于副翼偏转和攻角 36 表 5.5 升降舵偏转和攻角引起的力矩系数 ...... 37 表 5.6 副翼偏转和攻角引起的偏航力矩系数 38 表 5.7 攻角引起的气动系数及导数 .......................... 39
本文主要研究以太阳能电池为主要动力源的无人机 (UAV) 的空气动力学和设计。该过程包括三个阶段:概念设计、初步设计和飞行器计算流体动力学分析。电动无人机的主要缺点之一是飞行时间;从这个意义上说,挑战在于创建一种可以提高无人机续航能力的空气动力学设计。在本研究中,飞行任务从飞行器设计尝试达到最大高度开始;然后,无人机开始滑翔,并通过太阳能电池实现电池电量恢复。使用概念设计,空气动力学分析重点关注作为滑翔飞行器的无人机,计算从估计重量和空气动力学开始,并以最佳滑翔角度结束此阶段。事实上,气动分析是针对初步设计进行的;此步骤涉及无人机的机翼、机身和尾翼。为了实现初步设计,需要对气动系数进行估算,并进行计算流体动力学分析。
本文介绍了通过 CFD 方法从各种飞机上分离外挂物所获得的结果。本文介绍了三种 CFD 应用。第一个应用介绍了计算结果,该结果通过通用机翼-吊架-外挂物配置(Eglin 测试案例)在 0.95 马赫下的可用实验数据进行了验证。本应用使用了两种不同的商用 CFD 代码:CFD-FASTRAN(隐式欧拉求解器)和非稳态面片法求解器 USAERO,并结合了积分边界层求解程序。使用 CFD-FASTRAN 可以捕捉到外挂物分离轨迹的主要趋势。此外,仅使用非稳态面片代码,就可以在 0.3 马赫下解决燃油箱与 F-16 飞机机翼和完整飞机配置的分离问题。详细讨论了两种代码解决存储分离问题的结果和优势。在第二个应用中,研究了相同的 Eglin 测试案例,其中使用非结构化的 Ansys FLUENT 获得计算结果。此测试案例获得的 CFD 结果与实验测试结果非常吻合。本文介绍的第三项研究是关于从战斗机上投放的诱饵的独立分离分析。本研究中使用的诱饵在几何形状上与用于电子战应用的对抗弹丸非常相似,其轨迹是使用 3DOF 飞行动力学代码预测的。使用 Ansys FLUENT 输入代码的气动系数及其验证。利用气动查找表,通过 3DOF/6DOF 非定常 CFD 和 3DOF 准定常飞行动力学分析获得了诱饵的轨迹。观察到,诱饵的重心位置、尾部尺寸和释放马赫数在诱饵沿其轨迹的振荡运动中起着至关重要的作用,因此对其安全分离也起着至关重要的作用。可以看出,静态不稳定的诱饵能够沿其轨迹翻滚。无论静态稳定性如何,其运动总是由高幅度振荡组成。
垂直轴风力涡轮机 (VAWT) 在城市、偏远地区和海上应用的开发中重新引起了人们的兴趣。过去的研究表明,在能量捕获效率方面,VAWT 无法与水平轴风力涡轮机 (HAWT) 竞争。在低叶尖速比 () 下,VAWT 性能受到动态失速 (DS) 效应的困扰,其中每个叶片每转一圈都会超过静态失速多次。此外,对于 <2,叶片在超过 70% 的旋转期间在失速之外运行。但是,VAWT 具有许多优势,例如全向操作、发电机靠近地面、更低的噪音排放以及使用寿命更长的非悬臂叶片。因此,减轻动态失速并改善 VAWT 叶片的空气动力学性能以提高功率效率是近年来的热门研究课题,也是本研究的方向。西弗吉尼亚大学过去的研究重点是增加循环控制 (CC) 技术以改善 VAWT 空气动力学并扩大操作范围。通过增强 NACA0018 翼型以包含 CC 功能,生成了一种新颖的叶片设计。收集了一系列稳定喷射动量系数 (0.01≤C ≤0.10) 的静态风洞数据,用于分析涡流模型性能预测。开发了控制策略以优化整个旋转过程中的 CC 喷射条件,从而提高了 2≤≤5 的功率输出。但是,产生稳定 CC 喷射所需的泵送功率使增强涡轮机的净功率增益降低了约 15%。这项工作的目的是研究脉冲 CC 喷射驱动,以匹配稳定喷射性能和降低的质量流量要求。迄今为止,尚未完成任何实验研究来分析俯仰翼型上的脉冲 CC 性能。本文描述的研究详细介绍了关于稳定和脉冲喷射 CC 对俯仰 VAWT 叶片空气动力学影响的首次研究。实施了数值和实验研究,改变了 Re 、k 和 ± 以匹配典型的 VAWT 操作环境。根据先前流动控制翼型研究的有效范围,分析了一系列降低的喷射频率 (0.25≤St≤4) 和不同的 C 。由于动态失速效应,发现翼型俯仰将基线升阻比 (L/D) 提高高达 50%。当 C =0.05 时,动态失速对稳定 CC 翼型性能的影响更大,在正攻角时 L / D 增加 115%。脉冲驱动可匹配或改善稳定喷气升力性能,同时将所需质量流量减少高达 35%。从数值流可视化来看,脉冲驱动可降低 DS 期间尾流涡度的大小和强度,从而导致相对于基线和稳定驱动情况的轮廓阻力较低。编制了一个俯仰翼型测试数据库,包括气动系数 (C l 、C d) 的过冲和滞后,以改进分析模型输入,从而更新 CCVAWT 性能预测,其中将直接反映上述 L / D 改进。相对于年功率输出为 1 MW 的传统 VAWT,WVU 之前的工作证明,增加稳定喷气 CC 可以将总输出提高到 1.25 MW。但是,产生连续喷气的泵送成本将 CCVAWT 的年度净收益降低到 1.15 MW。目前的研究表明,由于质量流量要求降低,脉冲 CC 喷射可以回收 4% 的泵送需求,从而将 CCVAWT 的年净发电量提高到 1.19 MW,相对于传统涡轮机提高了 19%。
垂直轴风力涡轮机 (VAWT) 在城市、偏远地区和海上应用的开发中重新引起了人们的兴趣。过去的研究表明,在能量捕获效率方面,VAWT 无法与水平轴风力涡轮机 (HAWT) 竞争。在低叶尖速比 () 下,VAWT 性能受到动态失速 (DS) 效应的困扰,其中每个叶片每转一圈都会超过静态失速多次。此外,对于 <2,叶片在超过 70% 的旋转期间在失速之外运行。但是,VAWT 具有许多优势,例如全向操作、发电机靠近地面、更低的噪音排放以及使用寿命更长的非悬臂叶片。因此,减轻动态失速并改善 VAWT 叶片的空气动力学性能以提高功率效率是近年来的热门研究课题,也是本研究的方向。西弗吉尼亚大学过去的研究重点是增加循环控制 (CC) 技术,以改善 VAWT 空气动力学性能并扩大操作范围。通过增强 NACA0018 翼型以包含 CC 功能,生成了一种新颖的叶片设计。收集了一系列稳定喷射动量系数 (0.01≤C ≤0.10) 的静态风洞数据,用于分析涡流模型性能预测。开发了控制策略以优化整个旋转过程中的 CC 喷射条件,从而提高了 2≤≤5 的功率输出。但是,产生稳定 CC 喷射所需的泵送功率使增强涡轮机的净功率增益降低了约 15%。这项工作的目的是研究脉冲 CC 喷射驱动,以匹配稳定喷射性能和降低的质量流量要求。迄今为止,尚未完成任何实验研究来分析俯仰翼型上的脉冲 CC 性能。本文描述的研究详细介绍了关于稳定和脉冲喷射 CC 对俯仰 VAWT 叶片空气动力学影响的首次研究。实施了数值和实验研究,改变了 Re 、k 和 ± 以匹配典型的 VAWT 操作环境。根据先前流动控制翼型研究的有效范围,分析了一系列降低的喷射频率 (0.25≤St≤4) 和不同的 C 。由于动态失速效应,发现翼型俯仰将基线升阻比 (L/D) 提高高达 50%。当 C =0.05 时,动态失速对稳定 CC 翼型性能的影响更大,在正攻角时 L / D 增加 115%。脉冲驱动可匹配或改善稳定喷气升力性能,同时将所需质量流量减少高达 35%。从数值流可视化来看,脉冲驱动可降低 DS 期间尾流涡度的大小和强度,从而导致相对于基线和稳定驱动情况的轮廓阻力较低。编制了一个俯仰翼型测试数据库,包括气动系数 (C l 、C d) 的过冲和滞后,以改进分析模型输入,从而更新 CCVAWT 性能预测,其中将直接反映上述 L / D 改进。相对于年功率输出为 1 MW 的传统 VAWT,WVU 之前的工作证明,增加稳定喷气 CC 可以将总输出提高到 1.25 MW。但是,产生连续喷气的泵送成本将 CCVAWT 的年度净收益降低到 1.15 MW。目前的研究表明,由于质量流量要求降低,脉冲 CC 喷射可以回收 4% 的泵送需求,从而将 CCVAWT 的年净发电量提高到 1.19 MW,相对于传统涡轮机提高了 19%。