多项神经影像学研究表明,CA 后 5 天内 DWI 的变化预示着不良预后。8-15 然而,DWI 分析的时机至关重要,因为弥散值在缺氧后不久就会发生变化。10 此外,虽然 DWI 是不良预后的有力预测指标,但它不够敏感,无法识别出预后良好的患者。大脑的自发活动不是随机的,而是在功能网络中组织的。16 静息状态 fMRI (rs-fMRI) 是绘制患者和健康志愿者大脑功能连接 (FC) 的有力工具。17 多项研究报告称,rs-fMRI 可以区分慢性脑损伤患者的意识状态,FC 下降与意识受损程度相关。18 最近有研究表明,fMRI 可以检测到脑创伤后昏迷患者对被动刺激反应的早期意识迹象 19 并且 FC 强度与昏迷后缺氧患者的良好长期预后相关。 20 然而,rs-fMRI 尚未系统地评估对昏迷后缺氧患者的早期预后。我们的研究旨在使用 rs-fMRI 和机器学习方法预测昏迷结果(即意识恢复与昏迷状态;即良好与不良结果)。我们专注于特别具有临床意义的病例,特别是昏迷的早期缺氧后患者和标准多模态测试后预后不确定的患者。
血流动力学反应函数 (HRF) 极大地影响了受试者内和受试者间大脑激活和连接的变异性,并且可能会混淆连接分析中时间优先性的估计,因此其估计对于正确解释神经影像学研究必不可少。此外,HRF 形状本身是一个有用的局部度量。然而,大多数用于 HRF 估计的算法都是针对任务相关 fMRI 数据的,只有少数算法可以直接应用于静息状态协议。在这里,我们介绍了 rsHRF,这是一个 Matlab 和 Python 工具箱,可实现从静息状态 BOLD 信号中进行 HRF 估计和反卷积。我们首先概述了主要算法和实际实现,然后通过使用公开的静息状态 fMRI 数据集进行验证实验来证明 rsHRF 的可行性和实用性。我们还提供了统计分析和可视化工具。我们相信这个工具箱可能对更好地分析和理解 BOLD 信号的成分和变异性做出重大贡献。
最近的研究深入了解了个体间创造性思维的差异,重点关注分布式大规模大脑网络的特征,包括大脑区域的局部层面及其成对相互作用以及整个大脑的整体层面。然而,创造性思维与中观网络特征(如群落和枢纽组织)的关系仍不清楚。我们采用数据驱动的方法来检查来自大量参与者的静息态功能成像数据中的群落和枢纽结构,以及它们与创造性思维的个体差异之间的关系。首先,我们计算了每个参与者的大脑区域被分配到同一个群落的概率。我们发现,创造性思维能力的提高分别与内侧颞叶和皮层下区域被分配到同一个群落的增加和减少有关,这表明创造力能力可能反映在大脑网络中观组织的个体间差异中。然后,我们使用参与者特定的社区来识别网络枢纽(其连接形成跨越不同社区边界的桥梁的节点),并根据其参与系数进行量化。我们发现 DMN 和内侧颞叶区域的枢纽增加分别与创造能力呈正相关和负相关。这些发现表明,创造能力可能反映在 DMN 和内侧颞叶结构的社区互动中的个体间差异中。总的来说,这些结果证明了研究中尺度大脑网络特征与创造性思维的关系的成果。
国防部 (DoD) 在基地内外对饮用水进行采样,以确保确定并解决国防部活动对饮用水中全氟和多氟烷基 (PFAS) 的潜在影响。该政策制定了通知要求,以确保国防部在公开披露覆盖区域 1 内饮用水中的 PFAS 采样结果时采用一致的方法,符合 2022 财政年度 (FY) 国防授权法案 (NDAA) 第 345 2 条的要求。
全氟和多氟烷基物质 (PFAS) 是一组广泛使用的人造化学物质,与严重的健康问题有关,对农村、郊区和城市地区构成严重威胁,并对弱势群体造成不成比例的影响。PFAS 在环境中具有持久性,可在活体组织中停留很长时间。在过去两年中,拜登-哈里斯政府采取了重大行动,加快防止 PFAS 释放的努力,扩大 PFAS 清理和补救措施,以保障人类健康和保护环境。1 鉴于 PFAS 的种类繁多,土壤、水和空气受到污染,还有很多工作要做。尽管如此,联邦政府在应对 PFAS 挑战方面取得了系统性和实质性的进展,并为未来两年设定了雄心勃勃的目标。
接触低浓度 PFAS 对人类健康的影响尚不确定。对大量 PFAS 的实验动物的研究表明,某些 PFAS 可能会影响它们的生长发育。此外,这些动物研究表明,PFAS 可能会影响这些动物的生殖、甲状腺功能、免疫系统和肝脏。关于 PFAS 暴露的流行病学研究评估了几种健康影响。这些研究的描述可在以下网址找到:https://www.atsdr.cdc.gov/pfas/。我们没有针对人类的类似研究。需要更多研究来评估接触 PFAS 对人类健康的影响。
BAT 评估中涵盖的三项技术是:颗粒活性炭 (GAC)、PFAS 选择性离子交换 (IX) 和反渗透 (RO) 或纳滤 (NF)。表 1 列出了 BAT 评估考虑的六个主要标准以及具体评估问题。第 2.0 至 4.0 节讨论了每种技术符合 BAT 标准的程度。第 5.0 节总结了 BAT 评估结果。详细讨论主要基于在制定文件《去除饮用水中全氟和多氟烷基物质的技术和成本》(USEPA,2024a)期间进行的文献检索信息和技术分析。该文件包含对每种技术的更完整描述以及它们用于 PFAS 处理的科学现状。
EPA 正在将这份文件提交给《联邦公报》(FR)以发表。EPA 提供这份文件仅仅是为了方便相关方。它不是根据《行政程序法》进行公开通知和评论的文件的官方版本。该文件不会根据 EPA 的信息质量指南进行传播,也不代表机构的决定或政策。虽然我们已采取措施确保已签署文件的互联网版本的准确性,但官方版本将在即将出版的 FR 出版物中发布,该出版物将出现在政府印刷局的 govinfo 网站(https://www.govinfo.gov/app/collection/fr)和 Regulations.gov(https://www.regulations.gov)上,如上文所述。
我们,本联合声明的共同签署方,代表着实现欧盟战略自主和实现数字化和清洁能源转型所需的关键部门,包括实现欧盟气候和能源目标所必需的净零技术 1。为避免对欧盟清洁技术部门造成严重后果,我们在此联合声明中强调氟聚合物对清洁能源和数字化转型以及欧盟净零产业的重要性,并呼吁欧洲化学品管理局和欧盟委员会考虑将氟聚合物排除在通用 PFAS 限制之外 。可再生能源技术、氢能和氢能相关技术、电池和其他能源系统的灵活性解决方案、制冷、空调和热泵、CCUS 2 、零排放汽车以及相关基础设施和电网技术对于欧盟经济脱碳、确保所需的可靠能源供应同时减少对进口石油和天然气的依赖至关重要。这些净零排放技术还依赖于上游价值链,例如半导体、机械设备以及电子制造业,这些行业同时面临着前所未有的全球竞争压力,并且被证明对提高欧盟的整体竞争力至关重要。净零排放工业法案 (NZIA) 和 CHIPS 法案的提案再次确认了这些技术和行业的战略性质。我们作为共同签署方,坚定地支持这些政策中所载的雄心勃勃且至关重要的目标。
光电学和高级材料杂志。22,编号9-10,9月至2020年10月,第1页。 518-522氟掺杂对使用喷雾热解方法沉积的SNO 2薄膜的特性的影响Youssef larbah A,*,Badis rahal A,Mohamed Adnane B A Speptormity Spectry Secardment,Algiers -CRNA -CRNA -CRNA -CRNA 02 BD。Frantz Fanon BP 399 Algiers,奥兰科学技术大学阿尔及利亚B技术系。 USTO-MB,B.P。 1505,31000 El-Mnaouer Oran,Algeria,在本文中,我们报告了通过在400°C下喷射热解沉积的未源源不断和氟掺杂的氧化锡(SNO 2:F)薄膜的结构和光学特性。 XRD分析表明,所有薄膜呈现具有首选方向从(110)变为(211)的四方金红石结构。 平均晶粒尺寸约为50 nm,随着氟的掺入而减小。 扫描电子显微镜(SEM)分析表明,纳米颗粒的大小为78 nm。 这些电影的传播率高85%。 光学差距从3.97到4EV不等。 电气研究表明,这些薄膜具有最低电阻层值的N型电导率,对9.Wt%F的掺杂膜的13(ω/γ)(2020年1月13日收到; 2020年10月22日接受; 2020年10月22日接受)关键词:SNO 2:SNO 2:F,SNO 2:S SNO 2,SNOO 2,喷雾,微观,选择性和电子属性 div>>Frantz Fanon BP 399 Algiers,奥兰科学技术大学阿尔及利亚B技术系。USTO-MB,B.P。 1505,31000 El-Mnaouer Oran,Algeria,在本文中,我们报告了通过在400°C下喷射热解沉积的未源源不断和氟掺杂的氧化锡(SNO 2:F)薄膜的结构和光学特性。 XRD分析表明,所有薄膜呈现具有首选方向从(110)变为(211)的四方金红石结构。 平均晶粒尺寸约为50 nm,随着氟的掺入而减小。 扫描电子显微镜(SEM)分析表明,纳米颗粒的大小为78 nm。 这些电影的传播率高85%。 光学差距从3.97到4EV不等。 电气研究表明,这些薄膜具有最低电阻层值的N型电导率,对9.Wt%F的掺杂膜的13(ω/γ)(2020年1月13日收到; 2020年10月22日接受; 2020年10月22日接受)关键词:SNO 2:SNO 2:F,SNO 2:S SNO 2,SNOO 2,喷雾,微观,选择性和电子属性 div>>USTO-MB,B.P。1505,31000 El-Mnaouer Oran,Algeria,在本文中,我们报告了通过在400°C下喷射热解沉积的未源源不断和氟掺杂的氧化锡(SNO 2:F)薄膜的结构和光学特性。XRD分析表明,所有薄膜呈现具有首选方向从(110)变为(211)的四方金红石结构。平均晶粒尺寸约为50 nm,随着氟的掺入而减小。扫描电子显微镜(SEM)分析表明,纳米颗粒的大小为78 nm。这些电影的传播率高85%。光学差距从3.97到4EV不等。电气研究表明,这些薄膜具有最低电阻层值的N型电导率,对9.Wt%F的掺杂膜的13(ω/γ)(2020年1月13日收到; 2020年10月22日接受; 2020年10月22日接受)关键词:SNO 2:SNO 2:F,SNO 2:S SNO 2,SNOO 2,喷雾,微观,选择性和电子属性 div>>