血流动力学反应函数 (HRF) 极大地影响了受试者内和受试者间大脑激活和连接的变异性,并且可能会混淆连接分析中时间优先性的估计,因此其估计对于正确解释神经影像学研究必不可少。此外,HRF 形状本身是一个有用的局部度量。然而,大多数用于 HRF 估计的算法都是针对任务相关 fMRI 数据的,只有少数算法可以直接应用于静息状态协议。在这里,我们介绍了 rsHRF,这是一个 Matlab 和 Python 工具箱,可实现从静息状态 BOLD 信号中进行 HRF 估计和反卷积。我们首先概述了主要算法和实际实现,然后通过使用公开的静息状态 fMRI 数据集进行验证实验来证明 rsHRF 的可行性和实用性。我们还提供了统计分析和可视化工具。我们相信这个工具箱可能对更好地分析和理解 BOLD 信号的成分和变异性做出重大贡献。
主要关键词