电池在各种储能系统中都是电化学存储设备,这些设备始终对固定应用和移动应用都有吸引力。多年来,已经开发了各种技术(铅 - 酸,镍含量,镍 - 金属氢化物,锂离子等。)和其他新型技术(金属 - 空气,固体状态电池,全固态电池等)仍在研究中。除了长长的生命周期外,这些设备具有高功率,能量密度和效率的最重要功能。,可以通过在电池本身的构建中开发新技术和/或控制它们在其最佳工作条件下运行的新技术来增加后者。为了实现这一目标,电池的建模及其参数的估计成为非常重要的挑战。的确,通过后者,可以研究,分析和预测具有不同目标的单个电池单元或整个电池组的行为。一方面,电池型号可用于分析电池本身,以提高其效率和生命周期,以构建电池管理系统或尺寸尺寸的电池组。另一方面,可以使用相同的型号来分析电池为一部分的整个系统的行为。本期特刊收集了许多有关电池化学,电气,热和老化模型,集成电池模型及其组成,电池参数估计方法以及电池的新颖应用和技术的文章。
锂单使用/纽扣/纽扣/可重新电池电池:(镍 - 瓦密封的铅,锂离子,金属氢化镍,镍金属氢化物,任何其他能够被充电的干细胞电池):根据纽约州法律,在纽约州法律下,销售可用电池的企业都必须收集和恢复电池,从而使其在消费者中销售,否则可以在消费者中销售,否则可以销售乘坐乘坐的企业。居民应将可充电电池端子的末端胶带和/或将电池放在单独的塑料袋中,然后将其运送到我们的设施,以防止火灾和其他安全危害。汽车/卡车/船/娱乐性车辆电池:根据纽约州法律,零售商必须免费接受,每月最多两个二手电池,或可以在多功能回收设施中处置。床/床上用品:可以在常规垃圾收藏中处置不需要的床罩,床单,枕头和毯子。当地的旧货店和捐赠垃圾箱公司将接受干净可用的床上用品。动物收容所和收养宠物中心还将接受我们动物的干净床上用品和毯子。床上用品(床垫和盒子弹簧除外)可以在多功能回收设施中以费用的费用处置。
NILAR设定了可持续性电池系统开发的标准 - 与瑞典的领先创新公司EMS Nilar一起,在高性能电池系统的开发和制造方面设定了标准。这些电池系统可以灵活地可扩展的固定储能系统,称为电能存储(ESS)系统。他们的主要权限是存储盈余产生的电力,例如从光伏系统中存储,以后可提供。这确保了全天候清洁的太阳能的连续供应,并显着增加了自我生成的绿色电力的消费,从而为环境保护做出了积极的贡献,并减少了对化石燃料的需求。此外,Nilar的持久镍金属氢化物(NIMH)技术的特征是稳健性和安全性,为传统锂离子电池提供了一种非常可靠的替代品。强烈关注可持续性和环境保护,Nilar正在为塑造更绿色的能量未来。该公司致力于促进有效利用可再生能源,并开发满足可持续能源供应需求的固定能源存储系统。Nilar的技术创新和高质量的电池系统正在帮助将世界朝着更环保的方向发展,并减少化石燃料的授权。
由于高压下Yttrium Hydride中的近气温超导率,Yttrium-Hydrium Hydrogen系统引起了人们的关注。我们使用同步子单晶X射线衍射(SCXRD)在87至171 GPA进行了研究,从而发现已知的(两个YH 3相)和五个以前未知的Yttrium氢化物。通过用富含氢的前光照器(北氨虫或石蜡油)激光加热YTTRIUM在钻石砧细胞中合成这些。根据SCXRD确定了新相结构中YTTRIUM原子的排列,并且基于经验关系和依从计算的氢含量估计揭示了以下化合物:y 3 H 11,y 2 H 9,y 2 H 9,y 2 H 9,y 4 H 4 H 23,y 4 H 23,y 13 H 75和y 4 H 4 H 4 H 25。这项研究还发现了碳化物(YC 2)和两个Yttrium同素异形体。复杂的相多样性,Yttrium Hydride中的氢含量及其金属性质,如从头算计算所揭示的那样,强调了鉴定超导阶段的挑战,并了解高压合成材料中的电子过渡。
1。使用太阳能混合系统中的储能系统87 1.1。主电池(不可拨出的)电池88 1.2。次级(可充电)电池89 1.3。铅 - 酸(PB)电池90 1.4。镍 - 铁(Nife)电池91 1.5。镍锌(NIZN)电池91 1.6。镍– cadmium(NICD)电池92 1.7。镍 - 金属氢化物(NIMH)电池94 1.8。钠 - 硫磺(NAS)电池97 1.9。钠 - 氯化钠(Nanicl)电池97 1.10。铝 - 空气(Al – Air)和锌 - 空气(Zn – Air)电池98 1.11。锂离子(锂离子)电池98 1.12。锂离子聚合物电池100 1.13。锂 - 铁磷酸盐(LIFEPO 4)电池101 1.14。锂离子电池的比较102 1.15。可充电电池类型的比较104 2。超级电容器106 2.1。超级电容器的使用区域和应用110 3。电池项111 3.1。电池容量111 3.2。电池充电状态(SOC)113 3.3。温度对电池115 3.4的影响。排出深度(DOD)115 3.5。 能量密度116排出深度(DOD)115 3.5。能量密度116
富含氢的超导体是有前途的候选者,可以实现室温超导性。但是,稳定这些结构所需的极端压力大大限制了它们的实际应用。降低外部压力的有效策略是添加与H结合的光元M形成MH X单元,充当化学预压缩器。我们通过对AC – H相图进行AC – H相图的审核来体现这一想法,证明AC – H二元的金属化压力在200 GPA时预测高达200 k的临界温度可以通过孢子菌的构度显着降低。我们识别三种热力学稳定(ACBE 2 H 10,ACBEH 8和ACBE 2 H 14)和四种亚稳态化合物(FCC ACBEH 8,ACBEH 10,ACBEH 12,ACBEH 12和ACBE 2 H 16)。所有都是超导体。尤其是FCC ACBEH 8保持动态稳定至10 GPA,在那里表现出181 K的超导转换t t c。be-h键负责这些三元化合物的特性,并使它们保持动态稳定在环境压力上。我们的结果表明,在低压下氢化物中的高t c su-经常性是可以实现的,并且可能刺激三元氢化氢的实验合成。
• Organic/Inorganic synthesis: Reactions like different kinds of substitution , elimination, addition reactions at carbon-carbon bonds, aromatic substitutions, reactions involving carbonyl groups, organometallic compounds, redox reagents, inorganic solids and organic polymers for heterogeneous catalysis and solid-phase synthesis, catalysis with transition metals,有机催化剂和刘易斯酸,立体选择合成的方法,重排(在多特蒙德大学进行的反应示例)•实验,您使用注射器,插管和转移插管。•在惰性气体下进行的实验•化学分析和分离技术 /天然产物的隔离和纯化,例如滤光,提取,离心,离心,不同的蒸馏,重新安装,重新安装,薄层色谱,薄层色谱(TLC),列形式和高质量•固定(列),•高质量学(Highomatigation)(•高质量学)(物质:红外(IR)光谱,NMR(¹,,³C,f,f和其他诸如119 sn,29 si 195 pt)2D-NMR光谱法,质谱法(MS),UV/VIS光谱,UV/VIS光谱,UV/VIS频谱,融化和沸点差异,频率分析,元素分析,元素,元素,元素,元素,同时•元素,同时,•元素,同时•元素,同时,同时•元素,元素,元素,同时•金属,氢化物,自我引入物质,溴化物和使用适当的安全协议。•处理液氮并在低温下工作,例如冷却技术降低至-80°C并处理液氮
催化烯烃功能化是一种从易于获取的化学原料构建分子复杂性的有效而经济的方法。[1] 过渡金属催化的烯烃氢芳基化/烯基化反应是一种构建 C(sp 3 )−C(sp 2 ) 键的直接方法。已经开发出各种策略来控制使用共轭和非共轭烯烃的区域选择性,其中非共轭烯烃因烷基金属链行走而引入了额外的复杂性。[2-7] 在过去的几年中,使用非共轭烯烃的反马尔可夫尼科夫氢芳基化方法发展迅速。[8-12] 在这些系统中,选择性控制通常源于对形成主要烷基金属中间体的热力学偏好。另一方面,使用非共轭烯烃的马尔可夫尼科夫选择性氢芳基化反应相对较少,该领域的研究进展较慢(方案 1A)。 [13] 2016 年,Shenvi 和同事报告了一项显著进展,他们开发了一种双催化钴/镍金属氢化物氢原子转移 (MHAT) 方法,该方法可有效用于末端烯烃与芳基卤化物的氢芳基化,其中区域选择性由通过 MHAT 有利地形成二级烷基自由基来控制。[13c]
氢化酶(H 2 ASE)有效地将H +与H 2相互互换,其离职数(吨)(10 2 - 5 mol S -1)。1,2基于这些金属酶的活性位点存在的金属中心,三种类型的h 2 ASE在自然界中是已知的 - [Fe - Fe] H 2 ASE,[Ni - Fe] H 2 ASE和fe-fe-fe-H 2 ASE。3,4中,[Fe - Fe] H 2 ASE对H 2代的选择更具选择性,[Ni - Fe] H 2 ASE对H 2氧化是选择性的,而在氢化物受体/供体底物的前提中,仅Fe-H 2 ASE与H 2或产生H 2或产生H 2。5,6 [Fe - Fe] H 2 ASE活性位点的高分辨率X射线晶体结构表明,A Fe 2 S 2(CO)3(CO)3(CO)3(CN)2有机金属核心(2FE子站点)的一个铁中心附着于[Fe 4 s 4]通过铜氨基固醇(Schemine(Schemine 1a and B))。4,7,8键二甲基二硫代硫酸酯(ADT)部分桥梁之间的两个Fe 2 S 2 S 2(CO)3(CO)3(CN)2有机型tallic核心之间的桥梁。两个铁中心中的每个中心都与一个 - 配体和一个 - cn-配体协调。9,10 A - Co Gridges两者
催化烯烃的功能化是从容易获得的化学原料中建立分子复杂性的一种有效和经济的方法。1过渡金属催化的烯烃水力酰化/烯基反应,尤其是一种直接构建C(SP 3) - C(SP 2)键的简单手段。已经开发了各种策略,以使用共轭和非偶联的烷烃来控制授权的倾向,后者引入了烷基金属链行走的并发症。2 - 7种具有非偶联烷烃的抗马科夫尼科夫水碳化方法在过去几年中迅速发展。8 - 12中,在这些系统中,选择性控制通常源于热力学的偏好,以形成主要的烷基金属中间体。Markovnikov-选择性氢碳化反应与非偶联的烷烃相对较少,并且该区域的研究进展较慢(方案1A)。13的明显进步,他开发了双催化二线金属 - 氢化物H原子转移(MHAT)方法,该方法对芳基烷基与芳基烷基的近端烷基化具有有效的作用,而芳基卤代的芳基烷烯化是由芳香均通过良好的态度来控制的。13 C