引言腐蚀被描述为合金或金属与培养基的接触(无论是液体还是气体),损伤(部分或整个)对合金或金属的外观和性能[1]。腐蚀是(工业,建筑物,交通和铁路桥梁以及住宅)等资产的问题[2,3]。腐蚀是一种自然而自发的过程,可导致纯属金属及其合金转化为多种稳定形式(硫化物,氧化物,纳米氧化物,氢氧化物等)通过化学和电化学反应及其周围环境[4]。我们都知道,物质腐蚀在我们的生活中产生了许多问题,以及重大的经济,健康和安全后果。金属可以通过多种方式保护侵害腐蚀[5]。例如,可以使用各种涂层来管理和保护金属免受腐蚀[6]。由于它们的晶粒尺寸非常小,晶粒边界量的高度百分比,因此纳米结构材料(1-100 nm)以其显着的机械和物理特性而闻名[7]。Various facets of nano-scale material synthesis have made significant progress, the emphasis is increasingly turning away from synthesis and toward the creation of functional structures and coatings that are more resistant to the corrosion, iron is widely employed as a construction material in most major industries, including petroleum, food, power generation, chemical industries, and electrochemical industries, owing to its good mechanical qualities and reduce cost, iron main issue is溶解在酸性和碱性环境中。集成浓缩酸性水溶液中的铁腐蚀是一个主要问题,在大多数行业中,酸通常用于许多应用,例如酸清洗,酸下降,酸腌制和油化酸化,因为酸溶液的一般磨料,迅速的建筑材料迅速腐蚀,以防止金属分解并减少酸的用途,腐蚀了腐蚀,必须添加腐蚀性,必须添加腐蚀[8] [8]。使用纳米技术来改变铁/电解质接触已被用来减少腐蚀性条件的影响(例如,纳米复合涂料对不锈钢的产生)[9-11]。如[12]中总结,纳米材料用于腐蚀控制最近已取得了重大进展。
Erg和Thara Mou在沙特阿拉伯王国的钴炼油厂建立了合作伙伴关系,正在推进开发硫酸钴炼油厂的计划,该计划将从其Metalk hatek intall设施中提供氢氧化钴,从其在民主共和国的Metalk Eunder eunder Resource Group(ERG)中宣布,该工具宣布了批准的宣言,该工具宣布了一份批准的宣言。钴硫酸盐,这是钴电动汽车电池的主要供应形式。垂直整合公司的钴业务的举动,旨在加强其作为化学部门的战略供应商的地位,尤其是用于电动汽车电池的地位。erg已将沙特阿拉伯王国确定为炼油厂的潜在寄宿管辖权,并与Thara Future Investment Company(Thara)合作,共同调查并从事该国投资。thara是由著名的沙特投资者最近建立的投资平台,专注于释放2030年愿景的机会,尤其是在王国拥有明显优势的部门。他们旨在利用王国的巨额矿产财富,并利用行业中的价值链,包括:化学,废物管理和未来材料。erg和thara今天概述了他们的合作备忘录。“ ERG预计电动汽车的持续市场渗透将推动到2030年对NCM和NCA钴电池的需求,”欧亚大陆资源集团首席执行官Benedikt Sobotka说。“ ERG正在领导行业努力,以确保全球可持续的,可追溯的钴采购到电池供应链中。与塔拉(Thara)联手将加速我们在王国中硫酸钴炼油厂的潜在发展。”塔拉(Thara)的执行合伙人Hisham Attar说:“当我们开始在王国中发展这个关键价值链时,我感到非常兴奋。”“这项工作体现了我们致力于创新和可持续增长的承诺,从而释放了与我们的愿景和目的无缝吻合的新机会。”该炼油厂将提供来自ERG Metalkol设施的刚果民主共和国的氢氧化钴,这是一种历史悠久的尾矿开垦和环境恢复操作,在氢氧化物中生产高品质的铜阴极和钴。
摘要三氧化铀UO 3具有弯曲的铀酰,UO 2 2+的T形结构,由赤道Oxo协调,O 2-。阳离子UO 3 +的结构相似,但具有赤道oxyl,o• - 。中性和阳离子铀三氧化物由硝酸盐协调的。CID的硝酸铀酰,[UO 2(NO 3)3] - (复杂的A1),消除了2号no 2以产生硝酸盐配位的UO 3 +,[UO 2(o•)(o 3)2] - (b1),它弹出3号no 3以在[uo 2(o 2(o)(否3)(否3)(c1)中,它会产生3号。最后,C1与H 2 O相关联,以在[UO 2(OH)2(no 3)]](D1)中提供氢氧化物。B1,C1和D1的IRMPD IRMPD证实了由硝酸盐配合的铀酰和以下配体:(b1)自由基Oxyl O• - ; (C1)Oxo O 2-; (d1)两个羟基,哦 - 。 由于硝酸盐是二齿,赤道配位为A1中的六个,B1中的五个,D1中的四个,C1中的四个。 低坐标C1中的配体充血表明轨道定向键合。 C1中赤道氧的水解体现了UO 3中的反式反式影响,UO 3中是铀酰,带有惰性的轴向氧和反应性赤道甲氧蛋白。 铀酰ν3ir频率表示以下供体排序:o 2- [最佳供体] >> o• - > oh--> oh-> no 3-。IRMPD证实了由硝酸盐配合的铀酰和以下配体:(b1)自由基Oxyl O• - ; (C1)Oxo O 2-; (d1)两个羟基,哦 - 。由于硝酸盐是二齿,赤道配位为A1中的六个,B1中的五个,D1中的四个,C1中的四个。低坐标C1中的配体充血表明轨道定向键合。C1中赤道氧的水解体现了UO 3中的反式反式影响,UO 3中是铀酰,带有惰性的轴向氧和反应性赤道甲氧蛋白。铀酰ν3ir频率表示以下供体排序:o 2- [最佳供体] >> o• - > oh--> oh-> no 3-。
HER 动力学缓慢,而 Ni 则具有一些积极特性,例如高导电性、稳定性和相对较高的地球丰度。[1,3] 自 20 世纪 60 年代以来,人们做出了巨大努力来提高 Ni 基电催化剂的催化活性,采用了各种有希望的候选材料,例如镍的氢氧化物、二硫属元素化物、磷化物、碳化物等。[1,4] 通常,可以通过调整催化剂的形貌(例如,生产纳米线、纳米片、纳米颗粒等)来增加活性表面积,以及改善可用活性位点的固有活性(例如,通过合金化、掺杂、缺陷工程等)来增强催化活性。对于镍而言,形成合金是改变形貌和内在活性的常用策略,其中 NiCo、NiFe 和 NiMo 混合物已被鉴定为很有前途的 HER 电催化剂。[2b,4,5] 多组分合金的使用是二元体系的自然延伸,其中已经研究了三元合金,例如 CuAlNi、NiMoFe 和 NiMoW[2b,4],尽管每种金属的作用尚不完全清楚。在常见的 Ni 合金中,NiFe 混合物通常表现出更好的催化性能,特别是,在这些合金中添加 Mo 可以降低起始电位,这是由于有利的氢-金属相互作用和增加活性位点的数量。[4,6] 因此,NiFeMo 合金是最有前途的 HER 电催化剂之一,主要通过热液工艺[7]或电沉积生产。 [8] 合成技术的选择对催化剂的形貌有显著的影响,一般来说,不同的合成技术具有不同的最佳 Ni:Fe:Mo 金属比。此外,这些技术的特点是产量低、材料负载有限,使其在大规模应用中的使用变得复杂。因此,寻找一种能够生产三金属合金的可扩展技术对于氢经济的发展至关重要。溶液前体等离子喷涂 (SPPS) 是一种很有前途的技术,它有可能生产出各种具有适合作为电催化剂的特性的涂层 [9]。因此,在本研究中,我们表明,在等离子喷涂过程中使用含有 Ni、Fe 和 Mo 金属盐的液体前体
Jakarta, Indonesia – PT Merdeka Battery Materials Tbk (IDX: MBMA) (“ MBMA ” or the “ Company ”) is pleased to announce that the Company has signed definitive agreements with wholly owned subsidiaries of GEM Co., Ltd (“ GEM ”) to construct a High-Pressure Acid Leach (“ HPAL ”) processing plant with a nameplate capacity of 30,000 tonnes per annum of contained混合氢氧化物沉淀物(“ MHP”)(“ HPAL JV”)中的镍。HPAL JV的概述HPAL JV将在印度尼西亚Morowali工业园区(“ IMIP”)内建造,该工业园区与现有的PT QMB新能源材料(“ QMB”)HPAL加工厂相邻。QMB是一家由GEM控制的合资公司,当前铭牌容量为每年30,000吨的MHP中的镍。在GEM的领导下,QMB HPAL加工厂在2022年中期进行了设计,建造和成功。HPAL JV将在PT ESG新能源材料(“ HPAL JV CO”)下构建和运行。MBMA对HPAL JV CO的所有权为55%,其中45%由GEM 1持有。根据HPAL合资协议的条款,GEM将指导HPAL加工厂的设计,建设和运营,而MBMA将带头在获得GEM的支持下获得相关的印尼政府许可,批准和激励措施,并安排项目融资。GEM将以“交钥匙”的基础两个阶段在两个阶段建造和委托HPAL加工厂。第一阶段的铭牌容量为MHP中的每年20,000吨镍,第二阶段将使铭牌容量增加到MHP中每年30,000吨的镍。第一阶段和第二阶段的目标调试日期分别是2024年底和2025年中期。两个阶段的总建筑投资总计限制为6亿美元,其中GEM提供了建筑成本保证。HPAL JV CO将根据MBMA的SCM矿产的商业条款采购和处理后来的镍矿石,根据矿石供应协议,在委托日期开始20年。将在SCM矿山建造一个矿石准备厂,以通过管道促进矿石运输到IMIP的HPAL JV加工厂。GEM HPAL扩展除了HPAL JV外,MBMA还可以选择参加GEM计划的HPAL扩展,每年在MHP中额外含有20,000吨的镍,股权不少于20%。
摘要:在这项工作中,使用硅烷偶联剂(IPTES)和聚合物块(ITP)成功合成了一种新型功能化的氧化石墨烯成核核定剂(GITP),以有效地改善PET的结晶和机械性能。为了全面研究官能化的GO对PET性质的影响,通过使用熔体混合方法将GITP引入PET矩阵来制备PET/GITP纳米复合材料。结果表明,与纯PET相比,PET/GITP具有更好的热稳定性和结晶性能,从而将熔化温度从244.1℃提高到257.1°C,并将其结晶度从595 s降低到201 s。此外,PET/GITP纳米复合材料的结晶温度从185.1℃至207.5℃升高,拉伸强度从50.69 MPa提高到66.8 MPa。本研究为官能化的GO提供了一种有效的策略,作为一种成核剂,可以改善PET聚酯的结晶和机械性能。
Index_drug Codrug rs ID CHR p 值 MAF 最接近的基因变体 ann. A mag.氢氧化物 N 吗啡 rs117944645 8 2,98E-08 0,010 LRRCC1 intronic A 泮托拉唑 A 甲氧氯普胺 rs147504573 10 1,09E-08 0,019 KCNMA1 intronic A 泮托拉唑 C 呋塞米 rs116091351 1 1,23E-08 0,017 TMEM81 intronic A 泮托拉唑 J 环丙沙星 rs117452099 6 2,40E-08 0,019 THBS2 基因间 A 乳果糖 A 匹可硫酸钠 rs12736144 1 1,48E-08 0,034 AJAP1 intronic A 乳果糖 C 呋塞米 rs1871838 8 5,43E-08 0,056 DLC1 基因间 A 硫胺素 J 甲硝唑 rs114942430 5 2,85E-08 0,053 CDH6 基因间 A 硫胺素 N 氯氮卓 rs186107005 12 4,75E-08 0,015 ALG10 基因间 A 钾 chl. A 镁 rs56255127 11 2,06E-08 0,135 NTM 内含子 A 钾 chl. C 呋塞米 rs146985296 6 3,85E-08 0,015 MCM3 基因间 A 钾 chl. J 环丙沙星 rs116132368 4 1,50E-08 0,013 UGT2A3 基因间 A 钾 chl. J 甲硝唑 rs4757645 11 4,85E-08 0,622 LDHA 基因间 A 钾 chl. J 甲硝唑 rs79970770 9 1,10E-08 0,016 ASTN2 内含子 A 钾 chl. N 氯氮卓 rs573836037 16 1,09E-08 0,014 HNRNPA1L3 基因间 B 华法林 C 呋塞米 NA 6 8,19E-09 0,017 NA 基因间 B 替扎肝素 A 钾 chl. rs2511771 11 7,29E-09 0,661 NTM 基因间 B 氯吡格雷 B 乙酰柳.酸 rs149039924 12 1,04E-08 0,011 CEP83 intronic B 氯吡格雷 C 美托洛尔 rs312802 17 5,27E-09 0,149 SEPTIN9 intronic B 氯吡格雷 C 辛伐他汀 rs28636409 4 2,20E-08 0,014 THEGL intronic B 乙酰水杨酸 C 美托洛尔 rs77925157 16 1,72E-08 0,011 GOT2 基因间 B 乙酰水杨酸 C 美托洛尔 rs758010917 19 3,85E-08 0,059 ZNF331 intronic C 地高辛 A 钾氯。 rs145706366 5 4,13E-08 0,022 CDH18 内含子 C 胺碘酮 A 泮托拉唑 rs146704861 8 1,38E-08 0,011 MFHAS1 基因间 C 胺碘酮 A 泮托拉唑 rs370304464 9 4,01E-08 0,159 TLE4 基因间 C 胺碘酮 B 乙酰水杨酸 rs185619351 1 5,36E-08 0,012 IGSF3 内含子
地球聚合物是从天然矿物质(粘土),废物或工业副产品的碱性激活获得的低碳粘合剂,以生成具有陶瓷特征的产品[1,2]。铝硅酸盐类型的反应性化合物迅速溶解在碱性溶液中,并形成Si型(OH)4-和Al(OH)4- [3,4]的羟基化低聚物。在多质量反应期间,四面体单元交替结合,形成构成地球聚合物的无定形格子。近年来,随着具有较低能量消耗和强大特性的粘合剂,地质聚合物已引起了很多关注,包括良好的机械性能,低液体渗透性,对高温的抵抗力和其他酸的攻击[5] [5],并大大降低了CO 2排放,更环保友好友好的材料[6 E 9]。高岭土和其他天然粘土,在通过热处理转化为梅托蛋白和钙化粘土后,低钙灰灰是合成地球聚合物的最常见前体[10]。近年来,重点一直放在高可用的原材料上,例如钙化粘土[11,12]。粘土通常由粘土矿物和其他相关的混合物组成[13]。与高岭土不同,粘土的主要缺点用作获得地球聚合物的先驱是组成的变异性和控制热激活过程的参数的控制。常用的粘土被用作地球聚合物前光照器,必须将其钙化以完全脱氢氧化,以避免形成新的稳定相,例如尖晶石[13 E 15]。因此,Buchwald等。在500至800 C之间的粘土矿物质的热激活通常会导致粘土矿物的脱羟基化[16]。其他作者研究了粘土的碱性激活。[17]研究了在550至950 c之间热激活的伊利石/蒙脱石粘土的适用性,形成地球聚合物。Essaidi等。[18]研究了在不同温度下激活的高岭土粘土和富含赤铁矿的伊利石 - 氯化粘土的碱性激活。得出的结论是,由于粘土矿物质的非晶化,Illite-Kaolinitc粘土的反应性优于高岭土粘土的反应性,获得了具有更好的机械性能的材料。Selmani等。[9]评估了两个商业元评估和三个突尼斯粘土,具有不同的化学成分,纯度和反应性,以确定它们用于地球聚合物合成的潜力。用粘土取代梅托氏蛋白,有利于多面反应。所使用的碱性激活剂是强碱性溶液,碱氢氧化物或水合碱硅酸盐。然而,由于需要高于1300℃的温度,因此通过非常昂贵且高度污染的生态过程进行了用作活化剂的碱性硅酸盐的产生,将大量CO 2排入大气中。因此,需要寻找新的替代激活解决方案,而环境和经济影响较小。改善碱性或碱性水泥的经济和生态平衡的一种方法是为传统碱性激活剂找到碱性(总或部分)。近年来,使用生物质来产生热量和电力,以便施加废物并减少CO 2排放
针对2023年8月25日,雅加达的60,000吨镍,雅加达 - PT谷印尼TBK(“ Pt Vale”或“ Company”,IDX Ticker:INCO)与Zhejiang Huayou Co. ltd(huialou)签署了确定的合作协议在混合氢氧化物沉淀物(MHP)产品中,浸出(HPAL)设施的目标是60,000吨镍和约5,000吨钴,可进一步加工到电动汽车电池中。该项目将从Sorowako街区处理Limonite镍矿石,HPAL设施将位于South Sulawesi的East Luwu的Malili。该项目以及Pomalaa HPAL设施和Morowali项目的最新进展,是实现我们增长野心和实现投资承诺的一部分。PT Vale Indonesia首席执行官 Febriany Eddy说:“这次合作与印度尼西亚建立国内EV生态系统的愿景一致,并使PT Vale成为解决世界上脱碳挑战的重要贡献者,该投资将带来本地经济利益,并确保在印度尼西亚的Indonesia's Nickel Resources。 PT Vale和合作伙伴对低碳的承诺以及PT Vale表明可持续的采矿实践将使这成为世界一流的项目。” PT Vale总裁专员Deshnee Naidoo说:“该协议是PT Vale的战略里程碑,因为我们在印度尼西亚提高了86亿美元的增长渠道。” HPAL项目将在获得所有必需许可后立即开始施工。Febriany Eddy说:“这次合作与印度尼西亚建立国内EV生态系统的愿景一致,并使PT Vale成为解决世界上脱碳挑战的重要贡献者,该投资将带来本地经济利益,并确保在印度尼西亚的Indonesia's Nickel Resources。PT Vale和合作伙伴对低碳的承诺以及PT Vale表明可持续的采矿实践将使这成为世界一流的项目。” PT Vale总裁专员Deshnee Naidoo说:“该协议是PT Vale的战略里程碑,因为我们在印度尼西亚提高了86亿美元的增长渠道。”HPAL项目将在获得所有必需许可后立即开始施工。Desnee补充说:“在印度尼西亚进行了半个多世纪的运营,PT Vale独特地放置并致力于支持和加速该国的野心,以便在下游加工上进行更大的镍,并建立了蓬勃发展的家务电动汽车供应链,从矿产采矿到电池和车辆生产。” Huayou主席Chen Xuehua先生说:“建立双赢未来锂行业的合作是Huayou致力于实践的发展概念。这种合作是Huayou Cobalt世界领先,绿色和低碳HPAL技术,印度尼西亚富镍资源优势和PT Vale的可持续采矿实践的另一个完美结合。通过合作,Huayou将通过严格的ESG实践实现低碳,绿色和可持续的资源开发,并为新能源行业的发展增强力量,并为印度尼西亚的经济和社会发展以及全球电动汽车行业及其供应链促进经济和社会发展。”
4。Manish Kumar,S。Arun,Pradeep Upadhyaya和G. Pugazhenthi,PMMA纳米复合材料的特性,使用各种兼容器制备,国际机械和材料工程杂志,10(2015)7。5。Manish Kumar,Vijay Kumar,A。Muthuraja,S。Senthilvelan,G。Pugazhenthi,纳米粘土对PMMA/Organoclay纳米复合材料的流变特性的影响,由溶剂粉碎技术制备,溶剂粉红色技术,Macromomolecular Encpular Sismposia,第1卷。365,1,2016。第104-111页。6。Manish Kumar,N。ShanmugaPriya,S。Kanagaraj和G. Pugazhenthi,PMMA纳米复合材料的融化性行为,用改良的纳米粘土加固,纳米复合材料,第1卷。2,3,2016。第109-116页。7。Manish Kumar,C.S。Sharma,Pradeep Upadhyaya,Vishal Verma,K.N。Pandey,Vijai Kumar和D.D.琼脂,碳酸钙(CACO3)纳米颗粒填充聚丙烯:颗粒表面处理对复合材料机械,热和形态性能的影响,《应用聚合物科学杂志》,第1卷。124,4,2012。第2649-2656页。8。Pradeep Upadhyaya,Ajay K. Nema,C.S。Sharma,Vijai Kumar,D.D。 agarwal和Manish Kumar,《随机聚丙烯的物理力学研究》,充满了经过处理和未经处理的纳米碳酸盐:不同耦合剂和兼容剂的影响,《热塑料复合材料杂志》,第1卷。 26,7,2013。 第988-1004页。 9。 256,2014。 第196-203页。 10。 34,6,2016。 第739-754页。Sharma,Vijai Kumar,D.D。agarwal和Manish Kumar,《随机聚丙烯的物理力学研究》,充满了经过处理和未经处理的纳米碳酸盐:不同耦合剂和兼容剂的影响,《热塑料复合材料杂志》,第1卷。26,7,2013。第988-1004页。9。256,2014。第196-203页。10。34,6,2016。第739-754页。Samarshi Chakraborty,Manish Kumar,Kelothu Suresh和G. Pugazhenthi,有机修饰的Ni-Al分层双氢氧化物(LDH)载荷对聚(甲基甲基丙烯酸甲酯)(PMMA)/LDH闪电溶液的流变特性的影响。Samarshi Chakraborty,Manish Kumar,Kelothu Suresh和G. Pugazhenthi,对PMMA/ONI-AL LDH纳米复合物合成的结构,流变和热性能的研究,通过解决方案混合方法合成:LDH Loading的效果,Polymer Science of Polymer Science,第1卷。11。Vijay Kumar,Manish Kumar和G. Pugazhenthi,纳米层含量对PMMA/Organoclay纳米复合材料的结构,热性质和热降解动力学的影响,国际纳米和生物材料杂志,第1卷。5,1,2014。第27-44页。12。Payel Sen,Kelothu Suresh,R。VinothKumar,Manish Kumar和G. Pugazhenthi,一种简单的溶剂混合耦合的超声处理技术,用于合成聚苯乙烯(PS)/多壁碳纳米管(MWCNT)NanoComposites(MWCNT)Nanocomposites:NananoComposites:NananoComposites:NananoCompos:Nananocompos:formed Modied Modied Modifiend Modifiend Modifiend Modified Modified Modified Modified Modifiend concique,杂志,杂志。1,3,2016。第311-323页。