摘要:以电催化为基础的能量生产、转化和储存,主要借助于氧析出反应 (OER),在碱性水电解槽 (AWE) 和燃料电池中起着至关重要的作用。然而,缺乏高效且成本合理的催化剂材料来克服 OER 缓慢的电化学动力学,是重大障碍之一。在此,我们报道了一种在 H 2 S 存在下使用低温退火快速简便地合成双相硫化镍 (Ni-硫化物) 的气相沉积方法,并证明它是一种有效的 OER 催化剂,可解决电化学动力学缓慢的问题。双相 Ni-硫化物结构由密集堆积的 10 − 50 μ m 微晶组成,具有 40 − 50 个独立的双相层,例如 NiS 和 Ni 7 S 6 。作为电催化剂,双相镍硫化物表现出优异的 OER 活性,在过电位 (η 10 ) 为 0.29 V 时电流密度达到 10 mA/cm 2,并且在 50 小时内表现出优异的电化学稳定性。此外,镍硫化物在碱性条件下表现出相当强的电化学稳定性,并在过程中形成具有 OER 活性的镍氧化物/氢氧化物。采用节能合成方法,制备出独特的双相镍硫化物晶体纳米设计,为高效电催化剂组的可控合成开辟了新途径,以实现长期稳定的电化学催化活性。
在很大程度上,纳米级的流体运输在很大程度上是维珍领土。近年来,碳纳米管中的快速流[1-4]等新现象已经发布,或者在碳纳米管中的特殊离子转运[5],硝酸硼纳米管中的大渗透力[6]或纳米氧化石烯和石墨烯氧化物的高渗透[6] [7-9]。这些现象中的许多现象仍有合理化[10,11]。尽管在理论和数值方面进行了详尽的探索,但仍然缺乏实验输出,因为该领域的研究非常具有挑战性。然而,对纳米通道内流体运输的系统性理解,尤其是某种神秘的碳材料,是获得对纳米级级别发挥作用机制的基本见解的先决条件。的确,这些材料的流体特性对社会问题(如淡化和能量收集)产生了影响,这确实使许多希望寄希望了,因此对于确定其特定行为的物理起源至关重要。在这封信中,我们探索各种尺寸的个体碳纳米管(CNT)内部的离子传输,通常在数十个纳米范围内。,我们尤其将重点放在离子电导率及其对盐浓度的依赖性以及离子电流的波动上。我们报告了低盐浓度下电导的“不寻常”缩放行为,可以用碳表面上的氢氧化物吸附来解释。单个纳米管和实验设置。- 单个跨膜纳米管设备由此外,当前噪声的测量值强调了噪声幅度对表面电荷的密切依赖性,这表明表面吸附在离子传输的低频行为中起关键作用。结果显示,结果与硝酸硼纳米管(BNNT)的响应有很大不同,后者表现出相同的Crys-Salographich,但截然不同。
摘要:镀锌是防锈的关键工业过程,产生了含有重金属和其他污染物的废水,带来了环境和健康风险。这项研究评估了联合石灰阴离子聚丙烯酰胺(PAM)治疗的有效性,以减少南非豪登省镀锌行业产生的废水中这些污染物的有效性。流出样品并分析重金属(CD,CR,Cu,Pb,Zn,Mn,Fe)和物理化学参数,包括使用标准方法,包括电导率,氯化物和pH。未经处理的废水表现出高水平的重金属,尤其是铅,锌,锰和铁,远远超过了局部排放限制。治疗后分析显示,金属浓度大幅降低,达到了调节标准,pH值调整至金属氢氧化物沉淀的最佳水平。此外,将氯化物浓度从14,383.24 mg dm -3降低至3,890.40 mg∙dm -3,并从130.50至21.10μs -cm -1降低。尽管有这些改进,但对于氯化物的值仍然超过了市政当局的排放限量为500 mg dm -3,电导率为0.1μs∙cm-1,表明残留的高离子浓度。虽然石灰-PAM治疗有效提高了废水质量,但结果表明需要补充治疗以完全遵守严格的调节标准。总体而言,石灰-PAM方法显示出降低重金属和物理化学污染物减少镀锌流出物质的潜力。但是,建议进一步优化和整合高级治疗技术以提高功效并确保环境合规性。
人们对电化学储能材料和技术的关注度日益提升,为该领域带来了大批新研究人员,这无疑是迈向进步的第一步。[1] 新研究人员的多元背景和独特视角可以启发和催化传统观念的改变,从而为原本停滞不前的领域带来突破。但必须注意的是,新研究人员的涌入往往是一把双刃剑——任何科学领域的新手通常都不了解基础科学、惯例和定义该领域标准的方法,也不了解该领域发展到这一阶段的历史。通常,这会导致该领域的专家完全否定新研究人员的工作,很少考虑这些工作背后可能存在的科学价值,仅仅是因为研究人员对数据解释不当或计算方法滥用。电化学储能材料领域也不例外。尤其臭名昭著的例子包括但不限于镍氢氧化物、钴氧化物和镍钴氧化物/氢氧化物。[2] 每年都会发表大量关于这些材料的研究,报告的比电容值为每克数千法拉,但由于作者解释、分析和报告数据的方式,这些值被忽略了。这绝不是一个新问题,而且尚未解决。为了确保我们领域的建设性进展,我们想再次提请研究人员——以及将评判他们工作科学基础的审稿人——注意正确解释和报告储能材料和设备数据的重要性。在以下章节中,我们将讨论研究人员在报告储能材料性能指标时常犯的错误,以及如何正确识别所研究的特定电极材料的电化学特性可以消除这些错误。
a b s t r a c t快速,简单和敏感的高性能液相色谱法,二极管阵列检测(HPLC-dad)技术是从注射填充机的接触部分中定量确定MeropeNem残基的。这涉及清洁后收集的拭子采样。该方法还解决了共享头孢菌素生产设施中MeropeNem交叉污染的管理。交叉污染是产品的混合,通过该混合物可以在其他产品中存在痕量的抗生素,这些抗生素无法阻止感染,但可以促进抗生素耐药病原体中的人类微生物。较差的β-内酰胺污染物对照可能会以不同剂型的形式引起残留的梅罗皮青烯,从而导致人类肠道菌群中的Meropenem残基,败血症期间的血液或环境废物。在制造过程中,应进行经过验证的科学控制,并正确监测MeropeNem污染。清洁后使用从表面收集的拭子采样在生产机器的接触部门上确定 MeropeNem残留物。与乙腈组成的流动相:20%四氧化氢铵氢氧化物的流动相,Xterra rp18列的pH 6.5±0.05(30:70,v/v)以流量为1.0 ml min -1,注射量为1.0 ml,注射量为20μL和UV(290 nm)。HPLC -DAD方法是线性的(R2≥0.999),灵敏,精确(RSD <2.7%),准确(恢复在97%和109%之间),分别在0.05和0.05和0.10 mg l -1时获得了LOD和LOQ。六个重复注射LOQ的区域RSD(%)为7.6。这项研究验证了药物制造商的Meropenem污染物控制程序。
摘要:在这项研究中,通过电化学方法制备了装饰的NF底物上的钴型Ni(OH)2。使用扫描电子显微镜(SEM),原子力显微镜(AFM),能量分散光谱(EDS),X射线光电学光谱(XPS)和X射线衍射(XRD(XRD)),使用扫描电子显微镜(AFM),能量分散光谱(EDS),X射线散射光谱(EDS)描述了制备材料的表面特性,粗糙度,化学成分和晶体结构。此外,使用衰减的总反射傅立叶变换红外光谱(ATR-FTIR)和拉曼光谱的光学表征技术用于确认PANI的聚合。结果表明,Pani和双金属氧化物/氢氧化物在Bare NF的平坦骨架上凝聚。在碱性培养基中进行氧气演化反应(OER)的Co-Ni(OH)2 /Pani-NF的电催化性能,并且表现出出色的电催化活性,表现出了出色的电催化活性,其过电势为180 mV@20 MA CM-2,带有Tafel Slope 62 mV dec-2 dec-2。TOF(10-2)值确定为1.58 V时为2.49 s-1,突出了Co-ni(OH)2 / pani-nf在催化OER时的内在活性升高。使用计时度测定法(CA)进行24小时的稳定性测试,以完成100 mA cm -2和循环伏安法(CV),对200个循环(CV)进行200个循环,扫描速率为5 mV s -1。结果表明,即使在暴露于这些条件之后,该材料即使在长期接触这些条件后仍保持其电化学性能和结构完整性。这些发现强调了Co-ni(OH)2 /pani-NF是OER的有效且有前途的电催化材料,有可能通过水电解来提高氢产生的效率。
神经母细胞瘤是一种胚胎癌,在幼儿死亡造成了成比例的疾病。测序数据在该癌症中很少有反复突变的基因,尽管表观遗传途径与病原体相关。我们使用了基于表达的计算屏幕,该屏幕揭示了去泛素化酶对患者生存的影响,以识别潜在的新靶标。,我们将His-Tone H2B去泛素化酶USP44视为神经母细胞瘤患者生存最大影响的酶。高水平的USP44与转移性疾病,不利组织学,晚期患者年龄和MYCN扩增显着相关。表达高水平USP44的肿瘤患者的子集的生存率明显较差,包括缺乏MYCN扩增的肿瘤。我们从经验上表明,USP44调节神经母细胞瘤细胞的增殖,
- 一个位于克威纳纳工业区的地点,该地点将包括spodumene浓缩液存储和生产氢氧化锂和副产品的炼油厂。注意:根据第四部分EPA转介的要求,GHGMP仅涵盖了Kwinana氢氧化物炼油厂的范围1和2排放。GHG排放。目前,这与根据澳大利亚政府的保障机制指定大型设施的阈值标准相同。作为一个新的开发项目,共价遵循了环境保护局关于温室气体(GHG)排放的指南。共价锂项目是澳大利亚第一个完全集成的氢氧化锂项目,可以完成IV部分EPA推荐。已经开发了共价的GHGMP来满足这一要求。共价还花了一些时间来了解其整体综合运营供应链的温室气体排放,从而从炼油厂延伸了。这包括对温室气体排放的合并评估;所有相关的采矿活动,Spodumene浓缩厂以及与将浓缩物交付给炼油厂相关的后勤活动。与第四部分推荐一致,共价公共温室气文档已开发和提交,作为反映与炼油厂直接相关的GHG排放的参考文献文件。广泛认识到,锂的使用是寻求脱碳的现代社会中的重要意见。在考虑EV部门的潜在广泛建立的CO 2 e的总体净减少量的量子时,重要的是要理解和欣赏氢氧化锂细化过程的排放本身,因此不可避免地是必不可少的。社会内部碳强度的降低是共价项目的关键长期成功因素。出于这个原因,该项目支持确保其限制其CO 2电子排放量低于使用商业上可行的选项可行的可行性。共价致力于这一长期愿景,并认识到一种灵活的方法对于推动最佳实践技术的持续创新和改进很重要。共价也将
抽象的透明度是开发功能性和装饰性薄膜和涂料的关键因素,但是将纳米粒子掺入有机树脂中以改善其性质,使其经常使其不透明。在这项工作中,环氧/分层双氢氧化物(LDH)纳米复合涂料的光物理特性与环氧树脂中LDH的分散剂状态相关。根据含有0.1、0.5、0.7、0.7、1.0和3.0 wt%mg – al -– al -– al -– ldh和Zn – al -al -ldhs的膜的透明度,评估了固体环氧网络的质量。在高载荷下,直接透射率(y直接)减少,而涂料中的光散射相对于整洁的环氧树脂得到了改善。最高的Zn – al -LDH加载(3.0 wt%)略微恶化了透明度(Y Direct = 93.3),但仍高于含有0.5 wt%mg – al -ldh的环氧纳米复合材料(y直接= 89.8)。在含有1.0 wt%Zn – al -dh的环氧纳米复合材料中分配了一个良好的标签,而在MG -AL -LDH含量的CI标记方面,环氧/mg -al -LDH纳米复合材料较差。在添加0.1 wt%Zn – al -LDH后,T g值的增加约为28°C,表明Zn – al -LDH可以使环氧基质和纳米片的相互作用很强。然而,环氧/mg – al -ldh纳米复合材料的T g降低是由于不当分散体而导致的mg – al -– ldH纳米片与环氧基质之间弱相互作用的标志。通常,首次揭示了CI使化学交联与环氧/LDH纳米复合材料的光物理特性相关联。
纳米技术定义 纳米技术是在原子、分子或超分子尺度上对材料进行操纵,尺寸范围为 1nm - 100nm,至少在其形状的一个维度上进行操纵。纳米化学是研究 1nm - 100nm 尺寸范围内材料中原子或分子的相互作用。 溶胶凝胶工艺 溶胶凝胶工艺是一种化学溶液沉积技术,可以描述为通过液体中分子前体的水解和缩聚反应形成氧化物网络。在此过程中,化合物溶解在液体中,以便以受控方式将其恢复为固体。溶胶是胶体颗粒或聚合物在溶剂中的稳定分散体。凝胶由三维连续网络组成,它包围着液相。在胶体凝胶中,网络由胶体颗粒聚集而成。溶胶凝胶化学基于烷基金属氧化物 M(OR) z 如 Si(OEt) 4 的水解和缩合,可描述如下 MOR + H 2 O MOH + ROH(水解) MOH + ROM MOM + ROH(缩合)溶胶凝胶过程可通过一系列不同的步骤来表征步骤 1:形成醇盐金属前体(溶胶)的不同稳定溶液步骤 2:由于缩聚形成金属氧化物或金属氢氧化物桥接网络而导致的凝胶化,这会增加溶液的粘度步骤 3:凝胶的老化,在此过程中缩聚反应持续直至凝胶转变为固体。步骤 4:干燥凝胶,将水和其他挥发性液体从凝胶网络中除去(干凝胶)步骤 5:脱水,通过在高达 800 o C 的温度下煅烧整块材料来实现(气凝胶)步骤 6:在高温下使凝胶致密化和分解,即 >800 o C。(凝胶膜)优点低温、廉价技术。避免共沉淀,可提取和生长前体混合物局限性控制颗粒的生长,生产速度非常慢。