摘要:高温热能储存使聚光太阳能发电厂能够提供基本负荷。热化学储能基于可逆气固反应,具有以分离反应产物的形式进行无损储能和可能的高能量密度的优势。金属氧化物的氧化还原反应能够在高温下储存热能,空气提供气态反应伙伴。然而,由于温度较高,提取金属氧化物颗粒固有的显能和热化学能对于提高系统效率至关重要。到目前为止,热化学储能领域的实验研究主要集中在用于连续充电金属氧化物的太阳能接收器上。连续运行的储能和太阳能塔系统将储能容量与发电量分离,使用金属氧化物颗粒作为传热介质和储能材料。因此,开发了一种基于逆流移动床概念的 kW 级热交换器。该反应器解决了氧化反应焓和锰铁氧化物颗粒流热能提取的综合利用问题。通过两个不同的温度段实现了本体的稳定温度分布。氧化产生了一个几乎等温的段,废气温度总体稳定。锰铁氧化物的氧化和热提取产生了 569 kJ/kg 的总能量密度,热化学份额为 21.1%。
有效的苯和环己烷对商品化学品的生产至关重要,并且是该行业中最具挑战性的分离之一。通过可回收,多孔固体的物理吸附在替代能源密集型的共济会或提取蒸馏方法方面具有重要的潜力。还原的石墨烯氧化物气凝胶(RGOA)是新兴材料,具有将2D石墨烯与普通3D材料连接独特性能的巨大希望。通过L-抗坏血酸,Bisuimbisuimphite的化学还原和(首次)(首次)通过动态气体吸附方法研究了苯甲酸,(首次)(首次)(首次)钠钠钠的苯/环己烷分离,并通过对Aerogelsical属性物理学的物理学物质进行了分析。 用二硫代石(RGOA_DTN)还原的气凝胶具有最高的还原度和比表面积(461.2 m2g-1),中孔的贡献最高。 它也是苯和环己烷最高摄取的样品。 RGOA_DTN上的二元分量吸附导致苯在2.1的环己烷上的吸附性的选择性。 吸附吸附研究证明了长期操作中吸附剂的出色热稳定性。 由于吸附能力与中孔无关,而与大孔表面积相关,因此吸附的选择性归因于气凝胶表面的不同物理化学结构。 结果表明,Rgoas可以是吸附性气相烃相距的多功能和灵活平台。通过L-抗坏血酸,Bisuimbisuimphite的化学还原和(首次)(首次)通过动态气体吸附方法研究了苯甲酸,(首次)(首次)(首次)钠钠钠的苯/环己烷分离,并通过对Aerogelsical属性物理学的物理学物质进行了分析。用二硫代石(RGOA_DTN)还原的气凝胶具有最高的还原度和比表面积(461.2 m2g-1),中孔的贡献最高。它也是苯和环己烷最高摄取的样品。RGOA_DTN上的二元分量吸附导致苯在2.1的环己烷上的吸附性的选择性。吸附吸附研究证明了长期操作中吸附剂的出色热稳定性。由于吸附能力与中孔无关,而与大孔表面积相关,因此吸附的选择性归因于气凝胶表面的不同物理化学结构。结果表明,Rgoas可以是吸附性气相烃相距的多功能和灵活平台。苯分子通过特定的c-h·×π相互作用强烈相互作用,而环己烷分子由于其形状/大小而被排除在气凝胶表面之外。
Abstract ........................................................................................................................................................ ix
燃料电池阳极的抽象修改对于在所需水平上实现有效转化率至关重要。它在此过程中受气体分布的影响。阳极的紧凑型轮廓对于我们作为可靠生产方法的烧结是直接影响,需要进一步修改以解决问题。在这项工作中,进行了实用的解决方案,以维持阳极的有效气体扩散,这是通过增强表面装饰来实现的。该研究使用有机多孔支持(PS)作为一种可持续和AP可容纳方法。有机PS由面粉制成,在烧结过程中蒸发。所产生的阳极的衍射曲线表明结构和物理特征没有实质性变化。形态观察意味着孔形成的各种模型,包括较高的PS比(15 wt%)实现的细长间隙。它促进了最高的渗透率高达0.425 m 2,最大二压差异仅为4.53 kPa。它表明表面修饰的实现是可靠的,可以在整个转换过程中对气体分布进行实质性改善。因此,这项工作的贡献是可以作为可靠方法来改善毛孔形成的。
thermal emissivity Subscript a anode A ambient b boiling point c cathode C collector e electrolyte E emitter F fuel cell i H 2 , O 2 , H 2 O L limit I internal j in, out, R, E, C act activation overpotential con concentration overpotential lb low bound leak leakage resistance max maximum ohm ohmic overpotential P maximum power density point ub up bound R radiative Rev reversible voltage T热离子缩写GTEC石墨烯热能转换器FC燃料电池FFTC远场嗜热伏oltaic细胞NFTC NFTC近场嗜热伏oltaic Cell RD Richardson-Dushman Sofc Solid氧化物燃料电池TEC热能转换器
pHS 5、7和9的水凝胶。评估了AFGO浓度和培养基pH,并与悬浮液的微观结构和风湿性有关。使用改良的鹰嘴豆法合成氧化石墨烯(GO)纳米片,并通过微波辅助反应与三乙基环胺一起官能化以产生AFGO。纳米片的特征是不同的技术,例如扫描电子显微镜(SEM),热重分析,拉曼光谱和X射线光电光谱。悬浮液通过稳态和动态流,ZETA电位和冷冻-SEM进行微结构分析来通过流变学检验进行特征。所有样品均表现出粘性行为,并由Herschel - Bulkley方程进行建模。关于碱基水凝胶,在pH 9下制备的样品显示出较低的粘度,屈服应力和弹性模量。在所有pHS上,纳米片浓度的增加会促进屈服应力,粘度,存储和损失模量的下降。冷冻仪显示pH对碱基水凝胶结构的影响。也可以观察到纳米添加浓度的增加会影响卡伯波尔微凝胶肿胀并削弱悬架微结构。
作者:E Denet · 2020 · 被引用 38 次 — ... 化学和生物武器。使用来自军事库存或生物民用的 CBRN(化学、生物、放射性、核)威胁剂...
Na(100)Na(110)Na(111)NaCl(100)NaCl(100)NACL(100)NACL(111)CO -0.25 EV -0.26 EV -0.23 EV -0.23 EV -0.23 EV -0.17 EV -0.17 EV -0.42 EV -0.42 EV CO 2 -0.25 EV -0.19 EV -0.19 EV -0.19 EV -0.19 EV -0.19 EV -0.35 EEVE -0.35 EEVE EAVE -0.35 EE.-0.35 EE.-0.35 EE.-0.35 EE..25 EV -7.98 EV -7.90 EV -0.88 EV -8.96 EV DMC -0.57 EV -0.56 EV -0.56 EV -0.56 EV -0.48 EV -0.48 EV -0.48 EV -0.47 EV -1.22 EV -1.22 EV CH 3O(甲基) (1,2 -2-甲酸)-4.00 EV -3.74 EV -3.94 EV -0.60 EV -4.60 EV -4.4.66 EV C 2 H 3 O 3 O 3(甲酸甲酯)-4.65 EV -4.53 EV -4.53 EV -4.53 EV -0.61 EV -0.5.50 EV -53 (甲氧基甲盐)-2.46 EV -2.59 EV -2.38 EV -0.48 EV -0.48 EV -3.49 EV -3.49 EV C 3 H 6 O 2(1,2 -2 -propandaly)-3.90 EV -3.74 EV -3.74 EV -3.74 EV -3.94 EV -3.94 EV -0.0.0.0.60 EV -0.60 EV -0.60 EV -0.60 EV -0.60 EV C 4(1 4(1 4(1 4(1 4(1)) -8.14 EV -7.92 EV -7.81 EV -0.69 EV -9.24 EV C 4 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H,H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H” .0.37 EV -0.50 EV C 3 H 6 O 1(1)(1 -2-2 -IL)-0.76 EV -0.66 EV -66 EV -66 EV -1.00 EV -0.49 EV -0.49 EV -0.49 EV -0.87 EV -0.87 EV C3 H 6 O 1(2)(2)(2 -propantaly -1 -1 -1 -1-yl) 51 EV -0.51 EV -0.51 EV -0.51 EV。 -2.84 EV PO(丙烷氧化物)-0.42 EV -0.43 EV -0.14 EV -0.51 EV -0.93 EV
摘要:自首次报道 Si(001) 上外延氧化物沉积以来,硅上复合氧化物的集成一直是一个快速发展的研究领域,其中基础材料物理与集成电子、光学神经形态和量子计算以及传感等领域的巨大技术前景密切相关。尽管前景广阔,但依赖于硅和外延钙钛矿共集成的器件通常仅限于基本的平面几何形状,因为它们在制造方面存在实际问题。在本文中,我们通过开发一种无需晶圆键合即可生产高质量 Si(001)/TMO/Si(001) 异质结构的方法克服了这些长期存在的挑战,从而将复合氧化物和 Si(001) 直接三维集成到技术相关的平台中。我们详细介绍了异质结构的结构和化学特性,并讨论了制造它们的通用设计规则。我们的研究成果极大地扩展了基于 TMO 的可实际实现的集成设备的范围,并推动这类有前景的材料更接近实现其全部技术潜力。