通过 ALD 循环次数可以实现区域选择性沉积 (ASD)。然而,对薄膜生长的横向控制,即区域选择性沉积 (ASD),对于 ALD 来说要困难得多。尤其微电子应用需要 ASD 来满足制造要求,因为关键特征尺寸缩小到纳米级,而且通过自上而下的光刻方法进行图案化变得越来越具有挑战性。[2,3] 光刻掩模需要以纳米级精度对准,即使是最轻微的掩模错位也必然会导致边缘位置误差 (EPE)。在 ALD 中实现 ASD 的传统方法可分为三大类:1) 非生长区域钝化;2) 生长区域的活化;3) 使用固有选择性沉积化学。在类别 (1) 中,非生长区域用钝化自组装单分子层 (SAM) 或聚合物膜进行功能化。 [4,5] 通常,当前体吸附在非理想组装或部分降解的 SAM 上时,会发生选择性损失。吸附在 SAM 上的前体分子作为后续前体剂量的反应位点,从而丧失选择性。[2] 在下一个处理步骤之前,还必须完全去除钝化层。在类别 (2) 中,生长区域表面在 ASD 之前进行功能化,以实现薄膜生长。[6–7] 然后,薄膜仅沉积在功能化表面上,而其他区域保持清洁。这种方法规定了非生长和功能化生长表面上的薄膜成核的明显对比。因此,它主要限于金属 ALD 工艺,因为金属表面比其他表面更容易成核。此外,需要仔细控制剂量以维持生长选择性。由于 ASD 的活化层被 ALD 膜掩埋,因此下一个处理步骤可以直接进行。在类别 (3) 中,即固有选择性 ALD,选择性完全由前体与基底上不同材料表面之间的反应决定。在正在制造的薄膜器件结构表面上,不同的材料暴露于 ALD 前体,但薄膜仅生长在某些优选材料上,从而定义生长区域。这是真正的自下而上的处理,将整体图案化步骤减少到最低限度。由于图案自对准,因此排除了 EPE。出于这些原因,(3) 是 ASD 的一个非常有吸引力的选择,但控制表面化学以在几个 ALD 循环中保持 ASD 极具挑战性。因此 (3) 主要限于金属的 ASD。[8–9]
钢合金作为经济的遏制材料候选材料,易受到 TES 系统中熔融介质的热腐蚀和氧化 [3-7, 9-22]。碳酸盐、氯化物-碳酸盐和氯化物-硫酸盐的熔融共晶混合物也被视为具有高热容量和能量密度的 PCM 候选材料 [3, 23]。腐蚀产物的溶解度和合金的氧化电位是影响遏制材料和熔融介质之间兼容性的关键因素 [24]。在钢合金中,材料表面保护性氧化物的形成可提高抗腐蚀能力,其中材料化学、温度和气氛决定了结垢速率 [25, 26]。然而,在熔盐中,由氧化铬等成分组成的保护层通常会通过熔剂溶解到盐混合物中。一旦氧化膜被去除,暴露金属中最不活泼的成分就会受到侵蚀 [24, 27, 28]。例如,铁基合金在 450°C 下的 ZnCl 2 -KCl 中的腐蚀是由于氧化膜的分离和剥落造成的[29]。
腐蚀是限制金属材料寿命的主要因素,由于控制钝化的金属-液体界面处的薄氧化膜极难研究,因此很难从根本上了解其控制机理和表面过程。在这项工作中,我们结合同步加速器技术和电化学方法来研究 Ni-Cr-Mo 合金的钝化膜击穿,该合金在很多工业应用中都有使用。我们发现该合金对氧析出反应 (OER) 具有活性,OER 的开始与钝化的丧失和严重的金属溶解同时发生。OER 机制涉及氧化膜中 Mo 4 + 位点的氧化为可溶解的 Mo 6 +,从而导致钝化击穿。这与典型的含 Cr 合金的跨钝化击穿有着根本的不同,在含 Cr 合金中,Cr 6 + 被认为在高阳极电位下溶解,但本文并未观察到这种现象。在高电流密度下,OER 还会导致表面附近溶液酸化,进一步引发金属溶解。由于 Ni-Cr-Mo 合金具有催化活性,OER 在其钝化破坏机制中起着重要作用,在研究催化活性合金的腐蚀时需要考虑这种影响。
包括端子盖,端子盖包裹所有金属部件,但小部件除外,例如铭牌螺钉、悬挂件和铆钉。如果这些小部件可以通过标准试验手指(见 IS 1401)从外壳外部接触,则应通过附加绝缘将它们与带电部件额外隔离,以防止基本绝缘失效或带电部件松动。漆、搪瓷、普通纸、棉花、金属部件上的氧化膜、粘合膜和密封化合物或类似不确定材料的绝缘性能不应被视为足够的附加绝缘。
新沉积的介电材料的质量控制是 nanoTDDB 使用的另一个例子。具体来说,当使用原子层沉积 (ALD) 制备薄氧化膜时,需要对该过程进行微调以产生可重复的结果。这里用 ALD 制备二氧化硅膜,并用椭圆偏振法测量其厚度。由于在晶圆的不同位置观察到一些膜厚度变化,因此使用 Jupiter XR AFM 进行 nanoTDDB 测量以测量膜的电性能。使用 AFM 软件中编程的自动程序在晶圆的各个位置进行测量。
氧化是将晶圆上的硅转化为二氧化硅的过程。硅和氧的化学反应在室温下就开始了,但在形成非常薄的天然氧化膜后停止。为了获得有效的氧化速率,晶圆必须在高温下放入有氧气或水蒸气的炉子中。二氧化硅层用作高质量绝缘体或离子注入的掩模。硅形成高质量二氧化硅的能力是硅仍然是 IC 制造中的主要材料的重要原因。氧化技术 1. 将清洁的晶圆放置在晶圆装载站中,然后将干氮 (N2) 引入腔室。当炉子达到所需温度时,氮气可防止发生氧化。
点蚀是局部腐蚀的一种重要形式,它始于材料上的一小块区域,并逐渐扩展,在表面形成难以察觉的较深凹坑 [1]。在此过程中会形成半球形或杯形的凹坑或孔洞 [16],被杂质或水覆盖的区域作为阳极,未被覆盖的区域作为阴极。在这种腐蚀类型中,金属的溶解被认为是由电化学机制控制的 [17]。不锈钢、铝和铁极易发生点蚀,这是一种特别危险的腐蚀形式 [1]。尽管不锈钢通常具有耐腐蚀性(含有铬和镍 [18-22]),但由于其保护性氧化膜受到局部侵蚀,不锈钢等材料仍会发生点蚀 [1]。
外延生长时,氧化膜必须生长在晶体衬底上。这些要求极大地限制了它们的适用性,使得我们无法制备多种人工多层结构来研究薄膜及其界面处出现的突发现象[2],也无法制造柔性器件并单片集成到硅中。[3–5] 人们致力于开发将功能氧化膜与生长衬底分离的程序,以便能够自由操作它。这些方法包括机械剥离[6]、干法蚀刻[7,8]和湿化学蚀刻[9,10]。在化学蚀刻程序中,使用牺牲层(位于衬底和功能氧化物之间)似乎是一种快速且相对低成本的工艺。为了使这种方法成功,牺牲层应将外延从衬底转移到所需的氧化物,经受功能氧化物的沉积过程,并通过化学处理选择性地去除,从而可以恢复原始的单晶衬底。 (La,Sr)MnO 3 已被证明可以通过酸性混合物进行选择性蚀刻,从而转移单个外延 Pb(Zr,Ti)O 3 层 [11] 和更复杂的结构,例如 SrRuO 3 /Pb(Zr,Ti)O 3 /SrRuO 3 。 [12] 最近,水溶性 Sr3Al2O6(SAO)牺牲层的使用扩大了独立外延钙钛矿氧化物层(SrTiO3、BiFeO3、BaTiO3)[13–15] 和多层(SrTiO3/(La,Sr)MnO3)[16] 的家族,这些层可进行操控,从而开辟了一个全新的机遇世界。[5,10,17] 制备此类结构的沉积技术也是需要考虑的关键因素,不仅影响薄膜质量,还影响工艺可扩展性。虽然分子束外延和脉冲激光沉积等高真空沉积技术是生产高质量薄膜的成熟技术[1,18–20],但溶液处理和原子层沉积等可实现低成本生产的替代工艺正引起人们的兴趣。[21,22]
摘要:采用快速熔化和凝固的快速传热增材制造方法生产的合金零件与传统工艺制成的材料相比,具有不同的微观结构、特性和性能。本研究比较了采用粉末床熔合工艺制备的SS316L与冷轧SS316L的耐腐蚀和氧化性能。此外,对不锈钢表面氧化膜进行了全面评估,因为该膜对抗腐蚀和氧化性能的影响最大。研究了热处理对增材制造SS316L耐腐蚀和氧化性能的影响。SS316L具有由亚晶胞形成的微观结构,其中局部浓缩的合金元素形成稳定的钝化膜。因此,它比传统的冷轧材料具有更高的耐腐蚀和抗氧化性能。然而,已证实热处理会去除亚晶胞,从而导致耐腐蚀和氧化性能的下降。