Wensheng Yan 5 , Tao Zhu 1,4,12 , Lin Gu 1,2,12 , Scott A. Chambers 6 , Sujit Das 13 , Gang-Qin Liu 1,2,12 ,
1 华沙理工大学微电子与光电子研究所,Koszykowa 75, 00-662 华沙,波兰 2 华沙大学物理学院,Pasteura 5, 02-093 华沙,波兰;piotr.wrobel@fuw.edu.pl 3 Łukasiewicz 研究网络 - 微电子与光子学研究所,Aleja Lotnikow 32/46, 02-668 华沙,波兰;pawel.michalowski@imif.lukasiewicz.gov.pl 4 波兰科学院物理研究所,Aleja Lotnik ó w 32/46, 02-668 华沙,波兰;ozga@ifpan.edu.pl(MO);bwitkow@ifpan.edu.pl(BW); aseweryn@ifpan.edu.pl (AS) 5 华沙理工大学物理学院,Koszykowa 75, 00-662 华沙,波兰;michal.struzik@pw.edu.pl (MS);cezariusz.jastrzebski@pw.edu.pl (CJ);krzysztof.zberecki@pw.edu.pl (KZ) * 通讯地址:jaroslaw.judek@pw.edu.pl
营养不良,肝病,肾病,休克,水肿和心血管疾病。相比之下,可以在脱水中发现高水平的白蛋白(高蛋白血症,> 55 g/L),体重或体内脂肪的增加。3在健康人的尿液中排泄少量白蛋白,尿液中白蛋白的参考范围为2.2-25 mg/l。4,5但是,当由于糖尿病或肾脏损伤而变得更可渗透时,可能会发生升高的尿白蛋白排泄。1,6严重的肾小球滤过机制可以增加以增加尿白蛋白排泄,该尿白蛋白排泄称为微藻或大藻蛋白尿,具体取决于丢失的白蛋白量。5,6微量白蛋白尿是指从24小时的尿液中收集24 h尿液或30-300 mg/l的尿白蛋白排泄,从随机或先生的尿液收集中。4这种白蛋白显示出最早的糖尿病性肾病阶段。然而,在没有早期检测和治疗的患者中,微量白蛋白尿可能会在一年中的一年中发展到不可逆的大藻(4300 mg/day)。因此,在非糖尿病患者中有慢性肾脏疾病和心血管疾病的人的肾脏损害的早期迹象。6已提出许多方法来确定尿液中的白蛋白量,例如酶联免疫吸附测定法(ELISA),7种荧光,8,9 Immunotortytimetry(IT),10,111111111111 IN)免疫法(IN),12个padimimmunoas- Say(RIA),RIA),13和CHEMIA,13和CHEMIA(CLIA),13和CHEMIA(CLIA)。14,15尽管这些方法是高灵敏度和特异性,但它们存在一些局限性,例如健康危害,耗时,劳动力密集的协议以及需要经验丰富的技术人员。因此,已经开发了几种传感器方法作为一种简单的方法来确定HSA的量,例如石英晶体微生体(QCM),16,17电化学传感器,18-20
在法律规定的某些条件下,图书馆和档案馆有权提供复印件或其他复制品。这些规定条件之一是,复印件或复制品不得“用于除私人学习、学术或研究以外的任何目的”。 如果用户请求或随后将复印件或复制品用于超出“合理使用”范围的目的,则该用户可能要承担侵犯版权的责任,
摘要:托有室温单光子发射器(SPE)的二维六角硼(HBN)有望用于量子信息应用。朝着HBN实际应用的重要一步是按需,位置控制的SPE。报告的用于确定性创建HBN SPE的策略要么依赖于与综合光子学不兼容的基材纳米图案,要么利用可能引入不可预测的HBN损害或污染的辐射源。在这里,我们报告了一种无辐射和光刻的途径,以确定性地通过纳米引导使用原子力显微镜(AFM)激活HBN SPE。该方法适用于二氧化硅 - 硅底物上的hbn扁曲,可以很容易地集成到片上光子设备中。对于多个凹痕尺寸,所达到的SPE收率高于30%,并且在400 nm左右的凹痕显示最大产量为36%。我们的结果标志着HBN SPE与光子和等离子设备的确定性创建和整合的重要一步。关键字:HBN,单光子发射器,原子力显微镜,纳米凹痕,片上积分■简介
悉尼科技大学土木与环境工程学院,悉尼,新南威尔士州 2007,澳大利亚 韩睿,研究生 东北大学材料各向异性与织构教育部重点实验室,沈阳 110819,中国,悉尼科技大学土木与环境工程学院,悉尼,新南威尔士州 2007,澳大利亚,*Andrew Nattestad,DECRA 研究员 ARC 电子材料科学卓越中心,智能聚合物研究所,澳大利亚创新材料研究所,伍伦贡大学,伍伦贡,新南威尔士州 2525,澳大利亚,anattest@uow.edu.au (A. Nattestad),0000-0002-1311-8951 *孙旭东,教授 东北大学轧制技术与自动化国家重点实验室,沈阳 110819,中国,xdsun@neu.edu.cn (X. Sun) *黄振国,副教授 教授
无机氮化物纳米材料因具有新颖的电化学活性和高化学稳定性而在可再生能源应用领域引起了广泛关注。对于不同的可再生能源应用,最佳氮化物相和纳米结构存在许多可能性和不确定性,这进一步促进了氮化物纳米材料的可控制备的探索。此外,与具有块体或陶瓷结构的传统氮化物不同,氮化物纳米材料的合成需要更精确的控制以保证目标纳米结构以及相纯度,这使得整个合成仍然是一个挑战。在这篇小型综述中,我们主要总结了无机氮化物纳米材料的合成方法,包括化学气相沉积、自蔓延高温合成、固相复分解反应、溶剂热合成等。从纳米结构的角度来看,近年来,几种具有纳米多孔、二维、缺陷、三元结构和量子点等纳米结构的新型氮化物表现出独特的性能并受到广泛关注。本文还讨论了功能无机氮化物设计和合成的未来研究前景。
摘要:氮化钛(Ti-n)薄膜是电导和导导的,具有高硬度和耐腐蚀性。致密和无缺陷的Ti-N薄膜已被广泛用于切割工具,耐磨性组件,医疗植入装置和微电子的表面修饰。在这项研究中,通过高功率脉冲磁控溅射(HPPM)沉积了Ti-N薄膜,并分析了其血浆特性。通过调节底物偏置电压以及其对微结构,残留应力和薄膜的粘附的影响来改变Ti物种的离子能量。结果表明,在引入氮气后,在Ti靶标表面形成了Ti-N化合物层,从而导致Ti目标放电峰功率增加。此外,Ti物种的总频量减少,Ti离子的比率增加。HPPM沉积的Ti-N薄膜密集且无缺陷。当Ti-ions的能量增加时,Ti-nfim的晶粒尺寸和表面粗糙度减少,残留应力增加,Ti-N Thin Fimflm的粘附强度降低。
“ ctusbdu(bmmjvn ojusjef ijhi fmfduspo npcjmjuz usbotjtupst(b/)&。5t bsf bu b qpjou pg sbqje pg sbqje hspxui hspxui hspxui hspxui i uif tuboebse(b/ ifufsptuvsft sfnbjo vopqujnj [fe gps nbyjnvn qfsgpsnbodf'ps uijt sfbtpo xf qspqptf qspqptf uif tijgu/ mbujops qspwf uif pvuqvu qpxfs boe uifsnbm nbobhfnfu pg *** ojusjefbnqmjàfst#fzpoe jnqspwmfonphu jmm jmm jmm bmmpx bmmpx bmmpx Ojdt 4ubuf pg uif dvssfou q diboofm'&5tnbuvsfàmufsjfdjpmwjbohmmz xjui ufhsbufe xjui xjui xjui bo“ m/(b/)& usjef fmfduspojdt nbz nbyjnj [f uifjhis qpfndpwmm ijhi nnvojdbujpo boe ijhi ijhi qpxfs mphjd bqqmjdbujpot