3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
摘要:剂量限制性毒性和患者之间显著的药代动力学差异常常使得药物难以安全有效地给药。用于监测患者特定药代动力学的分析方法缓慢而繁琐,进一步加剧了这一问题,这些方法不可避免地依赖于抽血和事后实验室分析。为了满足对改进“治疗药物监测”的迫切需求,我们正在开发基于电化学适体 (EAB) 的传感器,这是一种微创生物传感器架构,可以提供实时、秒级分辨率的生物体药物水平测量。EAB 传感器的一个主要优势是它们可推广到各种治疗剂的检测,因为它们不依赖于靶标的化学或酶反应性。然而,迄今为止,已证明可使用体内 EAB 传感器测量的四种治疗药物类别中,有三种与核酸结合是其作用方式的一部分,因此,该方法在多大程度上可以推广到不与核酸结合的治疗药物仍是一个悬而未决的问题。在这里,我们展示了在活体大鼠模型中,在按人体相关剂量给药后,对血浆甲氨蝶呤(一种抗代谢物(作用方式不依赖于 DNA 结合)化疗药物)进行实时体内测量。通过提供数百个药物浓度值,由此产生的秒级分辨率测量成功确定了关键的药代动力学参数,包括药物的消除率、血浆峰浓度和暴露(曲线下面积),精度达到前所未有的 5% 到 10%。凭借这种精度水平,我们可以轻松识别出即使是在健康大鼠中,在给予相同质量调整的甲氨蝶呤剂量的情况下,药物暴露量也存在显著(>2 倍)差异。通过提供实时、秒级分辨的甲氨蝶呤药代动力学窗口,此类测量可用于精确“个性化”这种毒性较大但又至关重要的化疗药物的给药。
图 II.1:能源部项目 LCC 和 ECC 申请及授予流程 33 图 II.2:适用于该项目的国家许可流程流程图 34 图 III.1:项目区域位置图 41 图 III.2:项目布局规划 42图 III.3:拟议的项目活动和时间表 43 图 III.4:疫苗的多样性和复杂性(来源:美国药物评论,2016 年) 44 图 III.5:疫苗工艺开发的概述(来源:美国药物评论)药物审查, 2016 年) 45 图 III.6:疫苗研究与开发(从开始到结束:来源:C OLE-P ARMER) 45 图 IV.1:拟议项目工地的照片 51 图 IV.2:孟加拉国地震分区图 53 图 IV.3:孟加拉国气候区 55 图 IV.4:马达利普尔气候图,显示全年平均每日最低和最高温度、降水量和风速 56 图 IV.5:马达利普尔站(左)和 K Hulna 地区的年降水量趋势和季节周期(右) 56 图 IV.6:M ADARIPUR 气象站的年度风速和风向 57 图 IV.7:2008 年至 2018 年 G OPLAGANJ 区地下水位变化(FA027 表示 G OPALGANJ SADAR) 57 图 IV.8:现场地表水和地下水采样 59 图 IV.9:2020 年 G OPLAGANJ 区雨季和旱季地下水盐度 60 图 IV.10:2020 年旱季和雨季地下水位变化。 60 图 IV.11:现场空气质量数据水平测量(EDCL 内外,G OPLAGANJ)64 图 IV.12:G OPALGANJ S ADAR 拟建疫苗工厂 4 千米范围内的土地利用地图 67 图 IV.13:G OPALGANJ 的气候参数变化 71 图 VI.1:与主要利益相关方的焦点小组讨论和磋商会议 89 图 VI.2:KII 期间的照片 90
然而,DCS 相对于 TCD 有几个优势,因为它对操作者的依赖性较低,并且不需要颞骨窗,而有些患者则没有颞骨窗。14 由于最近的 DCS 系统采样频率较高,因此可以提取类似于用 TCD 测量的 CBFV 波形的搏动 rCBF 波形。与 TCD 不同,DCS 在脑实质微血管水平测量 rCBF,与 TCD 测量的蛛网膜下腔内的大动脉相比,其具有不同的调节特性。最近的研究调查了使用 DCS 测量的搏动 rCBF 波形作为临床环境中 ICP 和 CrCP 的潜在生物标志物。5 – 7 , 10 , 11 然而,量化哪些因素影响 DCS 搏动波形的形态特征的研究有限。 15 人们认为,由于被坚硬的颅骨限制,测得的 rCBF 波形具有与周围脉动血流波形不同的特征。Monro-Kellie 学说认为,脑有三个部分:脑实质、脑脊液 (CSF) 和颅内血液。16 不同的部分可以充当缓冲区,如果其中一个部分的体积增加,另外两个部分就会减少,以在生理条件下控制 ICP。16 这意味着,在脑中,顺应性不仅反映血管扩张的程度,还由血管外顺应性介导。血管顺应性和这种血管外顺应性的综合作用称为颅内顺应性 (ICC)。13 多项研究表明,用 TCD 测得的大血管 CBFV 波形形状会随着 ICP 升高和 ICC 降低而改变。 13 , 17 , 18 因此,我们在此假设 ICC 还会导致用 DCS 测量的脉动 rCBF 波形发生形态变化。在这里,我们研究了 Chiari 畸形 (CM) 患者相对于健康对照者的脉动血流波形。CM 是一种解剖畸形,其特征是小脑扁桃体下降 (TD) 进入枕骨大孔。这会导致颅脊交界处 CSF 自由流动中断,从而可能改变 CSF 在 ICP 升高的情况下转移至椎管内的能力。19、20 CM 的经典且最可通过手术矫正的症状是枕下头痛,Valsalva 动作会加重该头痛。 21 多项研究表明,尽管 CM 患者的平均 ICP 值正常,但由于 ICC 减少,这些患者的脉动 ICP 波形和脉动 CSF 波形会发生显著变化。22 – 26
1. 初步地籍图应清晰易读,比例不得超过一百 (100) 英尺比一 (1) 英寸。建议的最大图纸尺寸为 48 英寸 x 36 英寸,最小尺寸为 17 英寸 x 22 英寸。2. 拟定的分区名称和拟定的街道名称不得与本市或格威内特县的任何其他分区或街道名称在发音上重复或过于接近。如有相反情况,局长可拒绝接受此类分区和街道名称。应尽可能使用与事件、个人、当地产业或自然特征相关的、对本市具有历史意义的名称。3. 附近地图(地点位置)4. 标记所有现有条件,包括标本树木和 CRZ。(参见树艺师检查表)。5. 所有者的姓名、地址和电话号码。6. 地籍图编制者的姓名、地址和电话号码。 7. 项目描述,包括总面积、拟议用途、拟议地块数量、地块大小、拟议密度和其他相关分区条件和法规(表格形式)。8. 对于多户和非住宅开发,以表格形式提供项目描述,包括建筑建筑面积的总平方英尺数、停车场摘要、建筑高度和其他相关分区条件。9. 场地边界调查和现有地形。调查日期、北点和图形比例尺以及数据来源。位置(土地区、土地部分和土地地块)。10. 显示所有样本树和 CRZ。11. 拟议场地布局。拟议的分区布局,包括地块线(带地块尺寸)、地块编号、大写字母、街道和小巷通行权线(带拟议街道名称的名称或字母标识)、通行权宽度、街道中心线数据、通过契约确定和保留的场地、公共和私人用途的地役权奉献以及单户住宅、非住宅用途和多户住宅的场地。 12. 标记现有和拟建道路、其他不透水表面和清理范围。 13. 描绘和标记自然场地特征和土地覆盖,包括排水渠、水体、湿地、洪泛平原、陡坡、溪流缓冲区等。 14. 描述可能受到拟议土地扰动影响的邻近区域,例如溪流、湖泊、池塘、住宅、道路等。 15. 显示所有现有水道并描绘 100 年洪泛平原/泄洪道的范围。 16. 显示通往公共街道的滞洪池通道(20 英尺非住宅/30 英尺住宅)8.2.5 17. 沿着河岸两侧水平测量描绘 50 英尺未受干扰的缓冲区。沿着溪流描绘 25 英尺的额外不透水退缩区。 18. 确定拟议的河道改造位置,例如桥梁或涵洞交叉口。 19标记现有和拟议的流路以说明排水模式。
连续血糖监测 (CGM) 设备根据其预期用途(专业 CGM 或个人 CGM)获得 FDA 批准。专业用途 CGM 由医疗保健专业人员办公室所有,用于管理糖尿病,类似于 Holter 监测器用于管理心脏病的方式。CGM 在患者进行正常日常生活活动时记录和存储至少 72 小时、最多 7 至 14 天的数据。专业用途 CGM 可以以“盲法”模式收集数据,即患者在佩戴设备期间无法查看数据,或者可以实时显示数据。无论是使用实时模式还是盲法模式,临床医生都可以使用收集的数据来评估当前的血糖状态和变化,进行对话以奠定基础并促进对某些糖尿病管理主题的教育,并确定如何优化治疗,无论是通过行为改变还是通过调整所用药物或处方剂量来实现更有针对性的血糖 (Grunberger 等人,2021)。目前,有两种类型的 CGM 系统技术可供个人使用:rtCGM 和 isCGM,后者过去被称为“闪光”CGM。rtCGM 系统会自动将数据传输到糖尿病患者的接收器和/或智能手机,而 isCGM 系统则要求患者将接收器和/或智能手机“刷”到传感器附近以获取当前和历史传感器葡萄糖数据(因此,根据检查/记录水平的频率而断断续续)。直到最近,这些技术之间的一个关键区别是增加了主动警报/警报的保障,可以警告糖尿病患者即将发生或即将发生的血糖事件,例如低血糖和高血糖。新的 isCGM 系统提供可选警报,当葡萄糖水平低于或高于编程阈值时会警告用户;但是,这些技术的当前迭代不会警告用户预测的低或高血糖水平。rtCGM 和 isCGM 技术均可作为独立设备使用。但是,只有当前的 rtCGM 系统可以连接到传感器增强型胰岛素泵或自动胰岛素输送系统 (Grunberger 等人,2021)。此外,FDA 将连续血糖监测仪 (CGM) 分为治疗性或非治疗性,以及辅助性或非辅助性。治疗性或非辅助性 CGM 可用于做出治疗决策,而无需使用独立的血糖仪 (BGM) 来确认检测结果。非治疗性或辅助性 CGM 要求用户在做出治疗决策之前使用 BGM 验证 CGM 上显示的血糖水平或趋势。现已批准的 CGM 包括适用于儿科的设备以及具有更先进软件、更频繁的血糖水平测量或更复杂的警报系统的设备。最初的设备每 5 至 10 分钟测量一次间质葡萄糖,并存储数据以供临床医生下载和回顾性评估。目前可用的设备测量间质葡萄糖的间隔范围为每 1 至 2 分钟至 5 分钟,大多数提供