执行总结欧洲钢铁行业是温室气体的重要发射极,因此面临着脱碳的压力,以便与欧盟的气候目标保持一致。碳捕获,存储和/或利用率(CCS/U)技术通常被吹捧为重工业脱碳的“全部捕获”解决方案,但是它们的有效性和相关性在整个应用程序中差异很大。本报告在欧洲的铁和钢制造业中对CCS/U技术进行了全面评估。我们探索了各种钢生产路线的碳捕获选项,包括爆炸炉 - 基本氧气炉(BF-BOF)和直接减少的铁电弧炉(DRI-FEAF)路线。我们发现,用碳捕获的现有BF-BOF植物不太可能具有成本竞争力,尤其是在可以以有竞争力的成本生产氢(H2)的地方,这将使基于H2-DRI-DRI-DRI-DRI-EAF的制造材料有利。在短期内,考虑其商业可用性,将碳捕获的最有利选择是将天然气(NG)用作该路线(NG-DRI-EAF)的原料。但是,鉴于技术和市场发展的缓慢,我们预计捕获碳在钢铁行业中的作用将有限,其应用主要仅限于独立案例。捕获的CO 2可以重新使用为有价值的产品(CCU)。但是,虽然一些项目已经探索了利用钢生产中捕获的CO 2的燃料,化学物质和材料(例如捕获的CO 2排放的运输和存储(CCS)应优先于CCU。Thyssenkrupp将钢制磨坊气体转化为燃料和化学品,以及Arcelormittal的倡议,例如用于生物乙醇的Steelanol),这些技术在很大程度上仍处于试验阶段。总体而言,相对于行业的整体排放,CCU可能会提供有限的排放量,取决于有效的碳捕获过程,并且最终依靠更可持续的替代方案(如Dri-eaf和EAF)和EAFS,带有再生废料。其他问题包括嵌入产品中的“延迟排放”,能源使用的间接排放以及CO 2转化为甲醇等过程的重要能量需求。但是,在CO 2值链的这一部分中,挑战仍然存在。运输和存储的成本和可行性仍然是一个问题,欧洲存在的地质限制也是一个问题,大多数自然的储层集中在北海。欧盟尚未采用共同的规范和标准来规范其CO 2运输和存储网络,为投资者和项目开发人员增加了另一层不确定性。从气候的角度来看,CO 2运输和存储的最大问题仍然是CO 2泄漏的相当大风险,无论是在运输过程中还是在存储储层中。总而言之,尽管CCS/U技术将在脱碳重工业中发挥作用,但它们在铁和钢铁行业中的部署必须仅限于不使用绿色氢运行的DRI植物。话虽如此,优先考虑使用CCS/U的替代钢生产路线,例如使用可回收的消费后废料,例如使用可回收的消费后废料,更与气候目标更加一致。重新评估欧盟政策和资金以专注于减少排放,而不是CCS/U部署以获得经济机会。