正义是进一步有意义地发展国际人道法的唯一途径。事实上,近年来,国际人道法文书往往省去了传统上与国际法(正式来源)相关的某些形式;这种现象也被称为“非正式国际法制定”(IIL)。本文将分析国际人道法作为一种替代性出路,以应对各国不愿缔结新的国际人道法条约或承认习惯国际人道法而造成的当前“僵局”。在本文中,我们将通过研究国际人道法中国际人道法的例子,调查和评估非正式性提供的机会、缺点和陷阱。更具体地说,我们将研究与(1)《安全学校宣言》、(2)《塔林手册》和《塔林手册 2.0》以及(3)《蒙特勒文件》有关的国家实践。最重要的是,我们的研究结果将评估国际人道法是否能够克服其所谓的主要缺点之一:缺乏有效性。
“水热法制备新材料”是《材料》杂志的一期全新开放特刊,旨在发表原创研究和评论论文,介绍水热合成新材料研究的最新进展。本特刊还希望启发不同的视角,使水热技术(如材料的连续生产、水热回收技术以及水热合成的建模和模拟)更加经济。水热法仍然是一种“黑箱”技术,基于通过控制热力学(温度、压力、溶液的pH值和前体的化学成分)和非热力学变量直接从水溶液中结晶材料。基于热液独特的压力-温度相互作用,通过控制成核和生长的速率和均匀性,可以精确设计所得材料的尺寸、形貌、化学计量、多态性、亚稳态和聚集控制。此外,通过对热液体系的热力学建模,对水介质的溶液热力学以及对相平衡和结晶机理的预测,决定了制备新材料的能力。热液研究由地质学家在十九世纪中叶推广,主要集中在自然热液现象的实验室模拟。当代先进科学技术的不断发展,导致热液技术的多样性和复杂性不断提高,涵盖了多个跨学科的科学分支,而不仅限于晶体生长[1]。因此,水热法可以被视为重要技术的一部分,例如纳米技术和先进材料技术,它们都是一门高度跨学科的学科,也是物理学家、化学家、陶瓷学家、材料科学家和工程师所使用的一项技术。本期特刊的研究重点是“利用水热法制备新材料”,包括但不限于以下主题:水热合成、亚稳相、超临界水热生长、连续流水热合成、水热合成的建模和模拟、水热碳化和水热回收技术。
摘要:荧光检测是目前世界范围内常用的技术之一。本文讨论了一种有趣的复合材料的制备和光学特性。结果表明,将溶胶-凝胶自燃法获得的钴尖晶石铁氧体 (CoFe 2 O 4 ) 封装到聚[二苯基-甲基 (H)]硅烷基质中,可得到具有有趣光学特性的氟磁性粒子 (PSCo)。透射电子显微镜结合能量色散 X 射线分析显示,500 nm 大的球形结构包含一个由磁性铁氧体颗粒组成的核心(直径约 400 nm),周围包裹着一层薄薄的半导体荧光聚合物。所获得的材料表现出亚铁磁性。FTIR 光谱证实聚硅烷的 Si-H 功能得以保留。紫外光谱结合分子建模研究表明,磁芯对 σ 共轭聚硅烷分子内电子跃迁特性有很强的影响。稳态荧光光谱的进一步分析表明,内部磁场大大增强了聚硅烷的发射。未来将进一步研究这一特性,以开发新的检测装置。
文中表达或暗示的观点、结论和建议仅代表投稿人的观点,并不一定代表国务院、国防部或联邦政府任何其他机构的观点。已获准公开发布;分发不受限制。
摘要:激光导向的能量沉积(LDED)是一种添加剂制造(AM)技术,可以替代传统的减法铣削过程,以获取瓷器融合到金属(PFM)假体。仍然,尚未研究贴面陶瓷对该材料的粘附性能。这项研究的主要目的是对通过LDED和常规铣削技术获得的CO-CR-W金属框架的粘附性能进行系统的比较。比较包括微结构,超级和粘附分析。CO-CR提出了相似的行为(P <0.05),并且其性能通过目前在牙科行业中使用的贴面陶瓷和贴面复合材料进行了验证。
* Erin Ryan,佛罗里达州立大学法学院 Elizabeth C. & Clyde W. Atkinson 教授;哈佛大学法学院法学博士;卫斯理大学文学硕士(民族音乐学);哈佛大学文学士(东亚-中国)。如此规模的项目需要感谢很多。我非常感谢中美富布赖特项目和中国教育部让我在中国度过了一年,也感谢中国海洋大学的学生和教师如此坦诚地与我分享他们的世界。我也感谢芝加哥大学和清华大学让我在五年后重返中国。我感谢 Bob Percival、Alex Wang、Tseming Yang、Barbara Kaplan 和 Ed Zilavy 的宝贵意见。在过去五年中,余明、内森·凯尔特纳、劳拉·肖普斯、金伯利·怀特·拉杜卡、萨拉·布兰肯希普、苏·佩奇、特拉维斯·沃伊尔斯、马洛里·纽曼、吉尔·鲍文、袁野和辛帅都为本项目提供了重要的研究协助。《环境》的学生编辑们值得称赞,他们付出了巨大的努力,帮助准备了一篇这样的文章,准备发表在他们的期刊上。我还要感谢环境法教授博客发表了启发我写这篇文章的论文,并允许我保留该作品的版权,以供将来使用。最后,我感谢 Sophie Shi 在中国微信上发表了这些文章的翻译摘录,并允许我将她的回应评论的翻译纳入本期第 XI 部分。
本文档是公认的手稿版本的已发表作品,以ACS应用聚合物材料以最终形式出现3(6):2865–2883(2021),版权所有©2021 American Chemical Society在PEER PEER REVICE和发行者的技术编辑后。要访问最终编辑和发布的工作,请参见https:// doi.org/10.1021/acsapm.1c00252
量子色动力学 (QCD) 在从核力将原子核结合在一起到非弹性强子碰撞以及极端条件下物质的行为(如超新星和早期宇宙)等一系列现象中发挥着重要作用。自 20 世纪 70 年代发现以来,已经开发出许多分析和数值工具来研究 QCD。最成功的数值计算方法之一是格点 QCD [1,2]。已经使用格点 QCD 对强子谱 [3 – 5];电弱矩阵元 [6 – 14];高温低密度系统和一些多强子系统 [15 – 18] 的性质进行了高精度计算(最近的综述见参考文献 [19,20])。然而,一些重要可观测量的格点 QCD 计算受到所用随机采样中存在的符号问题的限制。例如,模拟高密度的 QCD [21-25]、与超新星和早期宇宙相关的 QCD,或者带有 θ 项的 QCD,存在符号问题 [26],超出了经典计算机的大规模能力范围。20 世纪 80 年代,费曼 [27] 和贝尼奥夫 [28] 认识到了经典计算机模拟量子物理的局限性,他们提出使用受控量子系统来模拟感兴趣的量子系统。最近,实验室中对量子系统的控制迅速改进,导致了最初几代量子计算机的诞生。人们已经探索了许多不同的平台,包括但不限于:
基于参考文献:•Gradl,P.R。,Mireles,O。,Andrews,N。“推进系统添加剂制造的简介。10.13140/rg.2.2.2.13113.93285•ASTM委员会F42关于增材制造技术。添加剂制造技术的标准术语ASTM标准:F2792-12A。(2012)。•Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。在2018年联合推进会议上(第4625页)。•Ek,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。
外延生长时,氧化膜必须生长在晶体衬底上。这些要求极大地限制了它们的适用性,使得我们无法制备多种人工多层结构来研究薄膜及其界面处出现的突发现象[2],也无法制造柔性器件并单片集成到硅中。[3–5] 人们致力于开发将功能氧化膜与生长衬底分离的程序,以便能够自由操作它。这些方法包括机械剥离[6]、干法蚀刻[7,8]和湿化学蚀刻[9,10]。在化学蚀刻程序中,使用牺牲层(位于衬底和功能氧化物之间)似乎是一种快速且相对低成本的工艺。为了使这种方法成功,牺牲层应将外延从衬底转移到所需的氧化物,经受功能氧化物的沉积过程,并通过化学处理选择性地去除,从而可以恢复原始的单晶衬底。 (La,Sr)MnO 3 已被证明可以通过酸性混合物进行选择性蚀刻,从而转移单个外延 Pb(Zr,Ti)O 3 层 [11] 和更复杂的结构,例如 SrRuO 3 /Pb(Zr,Ti)O 3 /SrRuO 3 。 [12] 最近,水溶性 Sr3Al2O6(SAO)牺牲层的使用扩大了独立外延钙钛矿氧化物层(SrTiO3、BiFeO3、BaTiO3)[13–15] 和多层(SrTiO3/(La,Sr)MnO3)[16] 的家族,这些层可进行操控,从而开辟了一个全新的机遇世界。[5,10,17] 制备此类结构的沉积技术也是需要考虑的关键因素,不仅影响薄膜质量,还影响工艺可扩展性。虽然分子束外延和脉冲激光沉积等高真空沉积技术是生产高质量薄膜的成熟技术[1,18–20],但溶液处理和原子层沉积等可实现低成本生产的替代工艺正引起人们的兴趣。[21,22]