在复杂的网络中找到隐藏的层是现代科学中的一个重要且非平凡的问题。我们探索量子图的框架,以确定多层系统的隐藏部分是否存在,如果是这样,则其程度是多少,即那里有多少个未知层。假设唯一可用的信息是在网络的单层上波传播的时间演变,因此确实可以发现仅通过观察动力学而隐藏的东西。我们提供有关合成和现实世界网络的证据,表明波动力学的频谱可以以其他频率峰的形式表达不同的特征。这些峰表现出对参与传播的层数的依赖性,从而允许提取上述数量。我们表明,实际上,只要有足够的观察时间,人们就可以完全重建行范围标准化的邻接矩阵频谱。我们将我们的命题与用于多层系统目的的波数据包签名方法进行了比较与机器学习方法。
摘要。通常,使用数据驱动方法来估计铅酸电池的健康状况(SOH)的方法依赖于测量阻抗,电压,电流,电池,电池生命周期和温度等变量。但是,这些变量仅提供有关电池内部变化的有限信息,并且通常需要传感器才能进行准确的测量。本研究探索了铅酸电池电池元件内的超声波传播,以收集数据,并提出了一种数据驱动的方法来分类SOH。结果表明,神经网络分类器可以有效区分两个类别:1)在健康状态下的电池,SOH大于80%,而2)电池处于不健康状态,SOH不到80%。本研究中介绍的数据驱动方法(使用超声波数据)提供了相对于电池内部单元格的变化提供的有价值的信息。常规外部测量可能无法捕获此信息。因此,它消除了对其他传感器安装的需求,并为SOH分类提供了有希望的替代方法。
近年来,表面声波(锯)已成为一种新型技术,用于在凝结物质系统中产生准粒子传输和带调节。锯子通过压电和应变场与相邻材料相互作用,沿波传播的方向拖动载体。大多数关于大声效应效应的研究都集中在载体的集体方向运动上,该方向产生了稳定的电势差,而动态空间电荷调制的振荡成分对于探测仍然具有挑战性。在这项工作中,我们报告了石墨烯中振荡大声效应的连贯检测。这是通过在跨胶质传感器发出的电磁波的时空电荷振荡的相干整流来实现的。我们系统地研究了整流信号的频率和门依赖性,并定量探测由锯驱动的载体重新分布动力学。观察振荡的大声电效应可直接访问通过传输实验引起的锯引起的动态空间电荷调制。
第二次世界大战初期,梅高作为通用电气公司的一名职员,与他的同事一起为海军部工作,密切参与了腔体磁控管的设计和开发,该磁控管的实验模型由伯明翰大学的 JT Randall 教授和 HAH Boot 博士制作。众所周知,腔体磁控管在大西洋两岸得到广泛应用,它被誉为盟军在技术上战胜敌人的最大发明贡献。二战后期,他开始研究波长从几米到 3 厘米的无线电波在陆地和海洋上的传播特性;他对这一研究领域的浓厚兴趣一直持续到去世。梅高博士于 1943 年被任命为 MBE。三年后,他接受了海军部信号研究所雷达分部的首席科学家一职。后来,他被任命为皇家海军科学服务部物理研究主任;尽管这使他承担了越来越多的行政工作,但他对无线电研究的科学方面仍然保持着浓厚的兴趣。他是英国的先驱研究员,于 1950 年将注意力转向了对流层散射的极短无线电波的传播特性,以及现在才意识到在某些通信领域使用散射技术的优势。他对这个问题的理论和实验工作得到了对光波在湍流大气中传播波动的类似情况的回顾;1952 年 10 月,他在电气工程师学会无线电部门的主席演讲中使用了“波和波动”这一主题。过去几年,梅高是海军部在科学和工业研究部无线电研究委员会的代表,也是该委员会的对流层波传播委员会的成员。他对这些机构的专业建议和帮助将为人们所怀念。但他的名声绝不限于英国。他参加了国际科学无线电联盟在欧洲各国举行的几次大会;在这些大会上,他为与对流层波传播有关的会议做出了重要贡献。在这样的访问中,就像在所有其他场合一样,他是一位令人愉快的伙伴,他精通当地语言,并且善于了解最好的、最便宜的美食和美酒场所。他对艺术、建筑和彩色玻璃的兴趣也体现在他访问外国首都时抓住的机会中。他身后留下了妻子和两个儿子。 R L SMITH-ROSE
❻radio波传播模型❼技术开发(“气缸天线”和“旋转连接器”等)for stabilized communication area and network construction Operation ❽Management for integrated network including satellite, HAPS networks, orchestration technology, autonomous operation technology using AI & machine learning (Zero-touch automation) ❾Space / NTN open architecture technology Payload ❿HAPS payload during the disaster ⓫Automatic tracking technology compatible with multiband-NTN antenna and moving NTN nodes (HAPS and LEO) ⓬Regenerative relay payload with gNB and MEC function ⓭Next generation battery ⓮Next generation control technologies for encryption and encryption keys applicable to satellites Terminal ⓯Multi access terminal capable of simultaneous connection of NTN and ground networks Platform ⓰Cloud platform linking ground and space(Data center) Connection protocol ⓱Optimized protocol and multiple access methods for integrated NTN networks Use cases Intersatellite链接控制⓲卫星星座之间的高级路由和互连方案
TEM 样品架边缘的 1 厘米 × 2 厘米空间内装有 Naoyuki Kawamoto 开发的纳米热电偶(即微型温度计)。该装置的边缘有一个显眼的水母形铜部件,一对探针从该部件延伸而出。探针(附在铜部件底部的球上)可以在三个维度上移动,精度为十亿分之一米。Kawamoto 将探针尖端与样品表面的纳米级区域接触,并通过施加从 TEM 源发射的电子束对其进行加热。利用该技术,他在 2018 年首次成功直接观察了复合材料内的导热路径。随后,他在 2023 年开发了一种将脉冲电子束应用于样本的技术,从而能够定期加热并成功测量样本内热波传播的幅度和速度。*其中一个探针由铬镍合金(镍铬合金)制成,而另一个探针由康铜(铜镍合金)制成,其尖端经过电解抛光,直径细至 8 纳米。纳米热电偶的温度分辨率为 10 -2 K。(实际尺寸)
本文提出了通过整合量子信息测量(特别是纠缠熵和量子复杂性)来扩展爱因斯坦场方程。这些修改后的方程旨在弥合广义相对论和量子力学之间的差距,提供一个统一的框架,将时空的几何特性与量子信息理论的基本方面结合起来。这种方法的理论意义包括可能解决黑洞信息悖论等长期存在的问题和暗能量的新视角。本文介绍了经典解的修改版本,例如史瓦西度量和弗里德曼方程,并结合了量子修正。它还概述了引力波传播、黑洞阴影和宇宙学可观测量等领域的可测试预测。我们提出了几种未来研究的途径,包括探索与其他量子引力方法的联系,设计实验来测试该理论的预测。这项工作有助于对量子引力的持续探索,提供了一个可能将广义相对论和量子力学与可测试预测统一起来的框架。
摘要 我们研究了腔体磁力学系统内的磁力学诱导光栅 (MMIG) 现象,该系统包括磁振子(铁磁体中的自旋,例如钇铁石榴石)、腔微波光子和声子 (Li et al 2018 Phys. Rev. Lett. 121 203601)。通过应用外部驻波控制,我们观察到探测光束传输轮廓的变化,这表明存在 MMIG。通过数值分析,我们探索了探测场的衍射强度,研究了腔体磁振子之间相互作用、磁振子-声子相互作用、驻波场强度和相互作用长度的影响。MMIG 系统利用磁振子的独特属性以及具有长相干时间和自旋波传播等属性的集体自旋激发。这些独特的特性可在 MMIG 系统中得到利用,用于信息存储、检索和量子存储器的创新应用,提供各种阶数的衍射光栅。
使用替代机制来耗散或散射,双态结构和机械超材料已经显示出有望通过将能量锁定到紧张的材料中来减轻影响的有害影响。在本文中,我们扩展了通过双层超材料吸收吸收的先前工作,以探索动能传递对撞击器速度和质量的依赖性,而应变速率超过10 2 s -1。我们观察到对两个影响器参数的依赖性很大,范围从比比较线性材料的显着性能到更差的性能。然后,我们将性能的可变性与系统中的孤立波的形成相关联,并在动态载荷下对理想化的能量吸收能力进行分析估计。此外,我们发现对阻尼的依赖性显着,并在系统内部的单个波传播中存在定性差异。这项研究中揭示的复杂动力学是为将双材料超材料应用于包括人类和工程系统冲击和影响保护设备在内的应用的潜在未来指南。
磁性材料中的自旋波具有超低能量耗散和长相干长度,是未来计算技术的有前途的信息载体。反铁磁体是强有力的候选材料,部分原因是它们对外部场和较大群速度的稳定性。多铁性反铁磁体,例如 BiFeO 3 (BFO),具有源于磁电耦合的额外自由度,允许通过电场控制磁结构,从而控制自旋波。不幸的是,由于磁结构的复杂性,BFO 中的自旋波传播尚不明确。在这项工作中,在外延工程、电可调的 1D 磁振子晶体中探索了长距离自旋传输。在平行于和垂直于 1D 晶体轴的自旋传输中发现了显著的各向异性。多尺度理论和模拟表明,这种优先磁振子传导是由其色散中的群体不平衡以及各向异性结构散射共同产生的。这项工作为反铁磁体中的电可重构磁子晶体提供了途径。