RM Microwave 是 RF/微波行业的马拉松选手之一。51 年前,三个厌倦了在大型公司工作的人成立了技术研究与制造公司,并开始制造有线电视组件。多年来,公司更名为 TRM Microwave,并将日益增长的能力集中在国防市场上。其约 90% 的业务用于国防,其余用于太空任务。TRM 的产品包括无源 RF/微波组件、集成组件和子系统。大量的 RF/微波电路功能(波束形成器、功率分配器、耦合器和混合器)可作为独立产品提供;但更多时候,它们是集成组件的构建块。这些广泛的组件设计让客户相信 TRM 拥有执行具有挑战性的程序的知识和生产能力。随着系统设计人员转向更换行波管放大器,TRM 发现开发用于 GaN 功率放大器的组合器的需求日益增长。除了低损耗,高功率合成器还必须消散设备反射功率产生的热量。该公司的工程师正在开发创新方法来应对这一热管理挑战,这为定向能和导弹计划打开了大门。为了支持其增长,TRM 于今年早些时候扩建了其工厂,将其位于新罕布什尔州贝德福德的工厂面积扩大了一倍,达到约 25,000 平方英尺。该公司在现有建筑上增加了一个两层楼的扩建部分,然后对原有建筑进行了改造,使两层建筑看起来相同。扩建创造了两个制造楼层,一个用于标准生产,另一个用于新产品开发。增加的空间使标准生产流程与价值流保持一致,包括
A/A 空对空(战斗) AAA 先进天线和阵列(桑德斯组) AAA 先进航空电子结构 AAAM 先进空对空导弹 AAC 授权和访问控制(互联网工作组) AACU 先进航空电子加密单元 AAED 先进机载消耗性诱饵(海军计划,ALE-50) AAG 先进音频编码(MPEG 文件扩展名) AAIC 航空电子装备整合委员会(SAE) AAL ATM 适配层 AASAS 先进机载态势评估系统 AAST 先进航空电子子系统和技术(海军计划) AATR 航空电子结构技术评审 AAU 备用访问单元 AAW 防空作战 ABET 基于 Ada 的测试环境 ABF 自适应波束形成器 ABI 应用二进制接口 ABI 航空电子总线接口 ABIST 自主内置自检 ABL 机载激光器(计划) ABM 应答存储器 ABR 可用比特率(ATM 服务类) ACDC 先进通信设备公司 ACDC 交流电转直流电(转换器) ACE 访问控制实体 ACE 先进计算环境 ACEM 先进通用电子模块(程序) ACF 访问控制设施 ACL 访问控制列表 ACM 计算机协会 ACP 先进通用处理器 ACPI 先进配置和电源接口(用于 OS 电源管理) ACR 允许单元速率(ATM ABR) ACS 访问控制系统 ACS 自适应计算系统(DARPA 程序) ACTD 先进概念技术开发(程序) ACTS 先进通信技术卫星(NASA) ACVC Ada 编译器验证能力 ACWG 航空电子通用工作组 A/D 模拟转数字(转换器) AD 访问描述符 AdaIC Ada 信息交换所 ADARS 先进防御性航空电子响应策略 ADARTS 基于 Ada 的实时系统设计方法 ADAS 先进分布式孔径系统(在 JSF 程序上) ADAS 架构设计和评估系统(来自 Cadre Technologies) ADB 苹果桌面总线ADI 模拟设备公司
指南•本政策未证明福利的福利或授权,这是由每个个人保单持有人条款,条件,排除和限制合同指定的。它不构成有关承保或报销/付款的合同或担保。自给自足的小组特定政策将在小组补充计划文件或个人计划决策中指导其他情况时取代该一般政策。•最重要的是通过编码逻辑软件适用于所有医疗主张的编码编辑,以评估对公认国家标准的准确性和遵守。•本医疗政策仅用于指导医疗必要性,并解释用于协助做出覆盖决策和管理福利的正确程序报告。范围X Professional X设施需要在选修课设置中执行的那些程序需要事先授权。急诊室,设施观察设置或住院设置不需要事先授权。描述磁共振成像(MRI)是一种放射学技术,用于放射学以形成解剖学的图片和人体的生理过程。MRI是一种无创成像技术,不涉及暴露于辐射。MRI扫描仪使用强磁场,磁场梯度,无线电波和计算机来生成内部器官和结构的详细横截面图像。磁铁产生了一个强的磁场,该磁场从体内的脂肪和水分子中的质子中对齐氢原子的质子,然后将其暴露于无线电波束上。这旋转身体的各种质子,并产生一个微弱的信号,该信号由MRI扫描仪的接收器部分检测到。一台计算机处理的接收器信息,该信息产生图像。对于某些MRI检查,静脉注射(IV)药物(例如基于Gadolinium的对比剂(GBCA))用于改变MR图像的对比度。基于Gadolinium的对比剂是稀土金属,通常是通过手臂中的IV给出的。对比成像应谨慎使用3-5慢性肾脏疾病的患者。进行人体的MR成像进行评估,而不是全包列表:
5 收发器构建模块建模 ................................................................................................................................ 20 5.1 信号路径组件 .............................................................................................................................................. 20 5.1.1 接收器噪声系数和非线性 ...................................................................................................................... 20 5.1.1.1 高级建模 ...................................................................................................................................... 20 5.1.1.2 THz 频段接收器非线性模型 ...................................................................................................... 21 5.1.1.3 三阶截点 IIP3dBm 和 SNDR ............................................................................................. 22 5.1.2 发射器输出功率 ................................................................................................................................ 22 5.1.2.1 输出功率的作用 ................................................................................................................................ 22 5.1.2.2 功率放大器输出功率和效率 ............................................................................................................. 23 5.1.3 功率放大器非线性建模................................................................................................... 24 5.2 时钟组件 ...................................................................................................................................... 25 5.2.1 锁相环和倍频器的相位噪声分布 ................................................................................................ 25 5.2.2 时间域相位噪声样本的生成 ............................................................................................................. 28 5.2.2.1 离散时间相位噪声模型 ............................................................................................................. 28 5.2.2.2 相位噪声功率谱密度采样 ............................................................................................................. 29 5.2.2.3 离散 PSD 缩放 ............................................................................................................................. 30 5.2.2.4 相位噪声样本生成 ............................................................................................................................. 30 5.2.2.4.1 随机性包含 ............................................................................................................................. 30 5.2.2.4.2 相位样本生成 ............................................................................................................................. 30 5.2.2.4.3 相位噪声样本生成................................................................................................................ 30 5.2.2.5 单次长生成................................................................................................................................................ 30 5.2.2.6 建议............................................................................................................................................... 31 5.3 数据转换器和基带滤波器........................................................................................................................ 31 5.3.0 简介....................................................................................................................................................... 31 5.3.1 数据转换器....................................................................................................................................... 31 5.3.1.0 简介................................................................................................................................................. 31 5.3.1.1 数据转换器性能指标.................................................................................................................... 32 5.3.1.2 性能趋势.................................................................................................................................... 42 5.4 光束斜视.................................................................................................................................................... 43 5.4.1 THz 波段的光束斜视效应............................................................................................................. 43 5.4.2 光束斜视的理论分析................................................................................................... 44 5.4.3 波束斜视处理 ................................................................................................................................ 48 5.5 射频损伤对 THz 链路的影响 ................................................................................................................ 5031 5.3.1.1 数据转换器性能指标 ...................................................................................................................... 32 5.3.1.2 性能趋势 ...................................................................................................................................... 42 5.4 光束斜视 ......................................................................................................................................................... 43 5.4.1 THz 频段的光束斜视效应 ......................................................................................................................... 43 5.4.2 光束斜视的理论分析 ............................................................................................................................. 44 5.4.3 光束斜视处理 ...................................................................................................................................... 48 5.5 RF 损伤对 THz 链路的影响 ............................................................................................................................. 5031 5.3.1.1 数据转换器性能指标 ...................................................................................................................... 32 5.3.1.2 性能趋势 ...................................................................................................................................... 42 5.4 光束斜视 ......................................................................................................................................................... 43 5.4.1 THz 频段的光束斜视效应 ......................................................................................................................... 43 5.4.2 光束斜视的理论分析 ............................................................................................................................. 44 5.4.3 光束斜视处理 ...................................................................................................................................... 48 5.5 RF 损伤对 THz 链路的影响 ............................................................................................................................. 50
信号的非平稳性变化且通常与类别相关,这是将脑电图 (EEG) 认知工作负荷估计的常见发现从实验室实验转移到现实场景或其他实验时面临的一大挑战。此外,脑信号反映的实际认知工作负荷是否是估计的主要贡献,还是具有辨别力和与类别相关的肌肉和眼部活动(可能是工作负荷水平变化的次要影响),这通常仍是一个悬而未决的问题。在本研究中,我们研究了一种基于波束成形的适应变化设置的空间滤波新方法。我们将其与无空间滤波和常见空间模式 (CSP) 进行比较。我们在拖船模拟器上使用真实的操纵任务以及听觉 n-back 次要任务作为两种不同的条件来诱导专业拖船船长的工作负荷变化。除了典型的条件内分类外,我们还研究了不同分类方法在 n-back 条件和操纵任务之间转移的能力。结果表明,在具有挑战性的迁移设置中,所提出的方法比其他方法具有明显优势。虽然在两种情况下(22% 和 10%),无滤波平均导致条件内归一化分类损失最低,但我们使用自适应波束形成(30% 和 18%)的方法与 CSP(33% 和 15%)的表现相当。重要的是,在从一种设置转移到另一种设置时,无滤波和 CSP 导致性能接近偶然水平(45% 到 53%),而我们的方法则是唯一能够在所有其他场景(34% 和 35%)中进行分类的方法,与偶然水平有显著差异。场景中信号成分的变化导致需要调整空间滤波才能进行迁移。使用我们的方法,迁移是成功的,因为滤波针对神经成分的提取进行了优化,并且对其头皮模式的额外研究主要揭示了神经起源。有趣的发现是,模式在不同条件之间略有变化。我们得出结论:低归一化损失的方法依赖于眼睛和肌肉活动,这种方法在一定条件下可以成功进行分类,但在分类器转移中会失败,因为眼睛和肌肉的贡献高度特定于条件。
自由空间光通信 (FSO) 作为一种有前途的技术,正受到越来越多的关注,以克服日益拥挤的无线市场的带宽短缺问题。目前,射频 (RF) 技术难以应对日益增长的高带宽数据需求。此外,随着用户数量的增加,RF 频谱变得如此拥挤,以至于几乎没有空间提供新的无线服务,此外,使用 RF 频段的带宽限制有限,并且必须为此类频段支付许可费,这还带来了额外的不便。FSO 通信与其他替代方案相比具有明显的优势,例如更窄、更安全的波束、几乎无限的带宽以及对使用光频率和带宽没有监管政策。此外,在太空领域,由于与 RF 相比,FSO 技术的质量和功率要求较低,因此对卫星通信系统来说,FSO 技术正变得越来越有吸引力。基于 FSO 技术部署无线链路的主要缺点是光波在湍流大气中传播时会受到扰动。会产生许多影响,其中最明显的是信号承载激光束辐照度(强度)的随机波动,这种现象称为闪烁,由闪烁指数 (SI) 量化。FSO 链路中随机辐照度波动的统计分析是通过概率密度函数 (PDF) 进行的,从中可以获得其他统计工具来测量链路性能,例如衰落概率和误码率 (BER)。如今,辐照度数据最广泛的模型是 Lognormal (LN) 和 Gamma-Gamma (GG) 分布。尽管这两种模型在大多数情况下都符合实际数据,但它们都无法在所有大气湍流条件下拟合有限接收孔径尺寸的辐照度数据,即在存在孔径平均的情况下。此外,在某些情况下,LN 或 GG 模型似乎都无法准确拟合辐照度数据,特别是在 PDF 的左尾。本文介绍的工作致力于提出一种新的模型,用于在存在孔径平均的情况下,大气湍流下的 FSO 链路中的辐照度波动;从而得到指数威布尔 (EW) 分布。在这里,使用半启发式方法来找到一组将 EW 参数直接与 SI 相关联的方程。经过测试,这些表达式可以很好地拟合辐照度数据的实际 PDF。提供了新模型出现的物理依据,以及弱到强湍流状态下的大量测试场景(包括数值模拟和实验数据),以评估其在 PDF 和衰减概率方面对辐照度数据进行建模的适用性。此外,
军用雷达罩性能和验证测试 Thomas B. Darling 客户支持副总裁 MI Technologies 系统设计师付出了令人难以置信的努力,为我们的军队生产最先进的雷达和其他基于射频的功能。现代雷达系统用于各种目的,包括但不限于:天气评估;导航;地形跟踪/地形规避;武器火力控制;电子战;敌人跟踪、监听和识别等。这些雷达系统依赖于极高的测量精度、可重复性和准确性,都需要防风雨保护。虽然许多人会想到这些复杂的雷达系统产生的奇特硬件和性感的屏幕截图,但大多数人不会想到这些系统的一个极其关键的组件:雷达罩或雷达罩。当人们考虑到这些系统对我们的军队正常运行的迫切需要以及冲突期间的恶劣条件时,这个组件保护着重要的系统,这可能是生存和灾难之间的区别。最知名的雷达罩是位于飞机或导弹机头的雷达罩。然而,许多军事应用和新的商业应用正在将微波系统定位在飞机的其他位置。这些通常需要奇怪的形状来保护射频系统并具有足够的空气动力学性能。军用天线罩测试自然比商业应用复杂得多。典型测量参数用于表征天线罩性能的一些典型测量参数包括:传输效率 (TE) 传输效率是通过天线罩的微波能量的百分比,通常在不同角度区域测量(通常代表雷达系统实际使用的天线罩面积)。它是通过比较两种不同条件下测试天线接收的功率水平来测量的。在天线罩关闭的情况下进行参考测量,然后在雷达天线上安装天线罩后再次进行测量。将得到的数据绘制在天线罩的表面上。虽然理想情况下是“透明的”,但所有天线罩在射频信号通过时都会由于反射、衍射、吸收、折射和去极化等因素而产生损耗。波束偏转 (BD)/ 瞄准线偏移 (BS) 波束偏转是指微波信号通过天线罩时传播方向的变化。如果考虑与跟踪快速移动的敌方目标或低空飞行、快速移动的飞机的地形规避相关的几何形状,那么由天线罩引入的即使非常小的角度误差也会产生重大影响。(对于具有跟踪零点的测试天线,瞄准线偏移这一术语通常与波束偏转互换使用。因此,波束偏转可以作为用于总波束情况的术语。) 反射率 反射率是雷达天线端口反射系数幅度的变化,这是由于天线罩的存在而引起的。这是使用带有远程头的反射计测量的。反射系数是在天线罩安装前后测量的,此时天线指向无反射环境(例如消声室或室外靶场)。理想情况下,此测量与雷达天线的指向方向无关。
1. Glaser, P. (1973)。将太阳辐射转换为电能的方法和装置。美国专利商标局,华盛顿特区 2. JE Drummond, JE (1980)。低地球轨道和地球同步地球轨道的比较,Power Conversion Technology, Inc. 3. Jones, R. (2010)。替代轨道 - 一种新的太空太阳能发电参考设计,在线空间通信杂志,2010 年第 16 期 http://spacejournal.ohio.edu/issue16/jones.html 4. Mankins, JC Mankins。(2006)。美国土木工程师学会地球与空间会议论文集。2006 年大会,德克萨斯州联盟城。空间电网 - 太空太阳能发电的进化方法。美国国家航空航天局,华盛顿特区 5. Komerath, N., Boechler, N. Wanis, N. (2006)。空间电网 — 空间太阳能发电的进化方法,美国土木工程师学会地球与空间分会 2006 大会论文集,德克萨斯州联盟城,2006 年 4 月 6. Brown, C. (1992)。波束微波电力传输及其在空间中的应用,IEEE 微波与技术学报,第 40 卷第 6 期。 7. 格鲁曼航空航天公司,星载雷达研究,1974 年 8. Komerath, N., Nicholas B. (2010)。空间电网,佐治亚理工学院航空航天工程学院,美国佐治亚州亚特兰大 30332-0150 9. Criswell, D. (2009)。月球太阳能发电 (LSP) 系统:实现可持续繁荣的实用方法,搜索与发现文章 #70070 10. Bekey, R. 和 Boudreault, R. (1999)。经济上可行的太空电力中继系统,Elsevier Science Ltd. 出版。11. Hopkins, M. (1980)。卫星发电站和非成本不确定性风险方面。兰德公司。12. Geoffrey A. Landis,《重新发明太阳能卫星》,美国国家航空航天局,格伦研究中心,俄亥俄州克利夫兰,2004 年。13. Mankins, JC (1997)。重新审视太空太阳能:新架构、新概念和技术,IAF-97-R.2.03,第 38 届国际宇航联合会,美国国家航空航天局高级项目办公室。14. 美国国家科学院国家研究委员会。(2001)。为太空太阳能奠定基础:对 NASA 太空太阳能投资战略的评估。对 1999-2000 年进行的 NASA 空间太阳能 (SSP) 探索性研究和技术 (SERT) 计划的评估,95 页。15. Komerath, N.、Venkat V. 和 Butchibabu, B. 空间电网的参数选择
促进创新合作的合作是我们在创新技术进步的背景下听到的一个词,可以帮助机构完成任务。大流行期间许多面对面活动和设施的关闭可能会导致人们认为合作已被搁置。幸运的是,机构的技术和迅速采用的进步有助于克服许多大流行的位置挑战。研究了一些示例,说明了这些挑战如何被克服,而且实际上导致了重大进步,可能会激发希望利用新方法来远程工作的机构之间的更具创造力的思维。这样的创新是霍洛伦斯(Hololens),这是一种无提,混合的现实耳机,可提供周围环境的高分辨率展示。让我们仔细研究两个例子,说明HoloLens如何帮助机构发展和发展有意义的合作,从而推动了科学和教育,并改善了向公众提供服务。根据其网站,美国能源部的Argonne国家实验室“在美国的创新生态系统中起着关键作用,与大学,政府机构和行业合作。Argonne将这些组织的世界一流的科学家和工程师与其自己的员工以及最复杂的科学设施一起,以使任何一个机构都无法自行承担问题。ANL主持DOE科学用户设施办公室,包括高级光子源(APS),该设施运营着一系列研究人员可以访问的同步辐射研究设施。这些合作面临着从开发新材料和能源技术概念到满足人类对清洁水和疾病预防的需求的领域的关键挑战,再到释放宇宙的基本秘密。” (ANL)。超过5,500名研究人员在那里进行了开创性的研究。现在您可能想知道同步辐射设施到底是什么。我也做了。简单的答案是,APS是X射线存储环设备,其超右X射线梁亮起了分子和原子水平的材料的结构和化学。您可能会想象,在开发可再生能源技术,电动汽车电池和疫苗以及其他创新的科学技术进步以及其他创新的科学技术进步方面,观察分子和原子水平材料的结构和化学的能力至关重要。在大流行期间,即使旅行和面对面的活动不可行,APS科学家也开始寻找继续科学合作的方法。“我们开始寻找有关如何将人们带到波束线的解决方案,而无需与我们旅行和会面。当我了解霍洛伦斯时,我对可能性感兴趣。(Microsoft Federal)现场研究人员在进行实验时开始佩戴HoloLens。这意味着异地合作者不仅可以远程观看,而且还可以体验实验,就好像他们是戴着耳机的现场科学家一样。现场科学家可以收集样品,运行诊断,并用双手使用机械,因为HoloLens耳机使双手免费。合作者在房间里的经验,即使他们位于另一个位置,尽管旅行或地理限制,也可以继续进行联合研究。
磁共振引导聚焦超声 (MRgFUS) 是一种非侵入性治疗方法,它结合了聚焦超声和磁共振成像两项技术。超声波束穿透软组织,在 MRI 的引导和监测下,可聚焦于目标部位。超声波使目标组织局部温度升高,导致凝固性坏死,同时不伤害周围的正常结构。每次超声产生的超声波都指向一个焦点,该焦点的最大焦点体积直径为 20 纳米,高度/长度为 15 纳米。这会导致温度快速升高,足以在焦点处实现组织消融。除了提供引导外,相关的 MRI 还可以提供在线温度成像,提供温度“图”,可进一步确认消融治疗的治疗效果并允许实时调整治疗参数。美国食品药品监督管理局 (FDA) 已批准 ExAblate® MRgFUS 系统 (InSightec, Inc.,以色列海法) 用于四种适应症;治疗子宫肌瘤 (平滑肌瘤),缓解骨转移性肿瘤相关疼痛,治疗药物难治性特发性震颤和震颤为主的帕金森病。超声设备专门设计为与 MR 磁体兼容,并集成到标准临床 MRI 单元中。它包括一个患者桌,桌上有一个支架,支架将聚焦超声换能器放置在水浴或轻油浴中。该设备的某些型号具有可拆卸支架;只有某些类型的支架可用于缓解转移性骨癌相关疼痛。子宫肌瘤 (平滑肌瘤) 是影响育龄人群的最常见疾病之一。子宫肌瘤的症状包括月经过多、盆腔压力或疼痛。目前可用于治疗有症状的子宫肌瘤的方法包括子宫切除术、腹部肌瘤切除术、腹腔镜和宫腔镜肌瘤切除术、激素治疗、子宫动脉栓塞术和观察等待。子宫切除术和各种肌瘤切除术被视为标准治疗。对于治疗与骨转移相关的疼痛,MRgFUS 治疗的目的是破坏肿瘤周围骨表面的神经。转移性骨病是癌症疼痛的最常见原因之一。现有的治疗方法包括保守措施(例如按摩、运动)和药物治疗(例如止痛药、双膦酸盐、皮质类固醇)。对于对这些治疗没有反应的患者,标准治疗是外照射放射治疗 (EBRT)。然而,相当一部分患者在放疗后仍有残留疼痛,这些患者需要替代治疗方法。 MRgFUS 也正在研究用于治疗其他肿瘤,包括纤维瘤、乳腺肿瘤、前列腺肿瘤和脑肿瘤。特发性震颤是最常见的运动障碍。它通常影响手和手臂,也可能影响头部和声音,很少影响面部、腿部和躯干。它在患者中是异质性的,频率、幅度、加重原因和与其他神经系统缺陷的关联各不相同。特发性震颤的神经病理学尚不确定,一些证据表明它位于脑干和小脑。如果患者因震颤而出现间歇性或持续性残疾,则初始治疗采用药物(β受体阻滞剂或抗惊厥药)。对于药物难治性患者,可以提供手术(深部脑刺激或丘脑切开术),尽管观察到不良事件发生率很高。