摘要 现代外科手术中麻醉是必不可少的,以确保患者安全并成功康复。麻醉深度 (DoA) 评估是一个重要且正在进行的研究领域,旨在确保患者在手术期间和术后的稳定性。这项研究通过开发一种基于脑电图 (EEG) 信号分析的新指数来解决当前 DoA 指数的局限性。采用经验小波变换 (EWT) 方法提取小波系数,然后进行统计分析。从小波系数中提取特征谱熵和二阶差异图。这些特征用于训练新指数 SSE DoA,利用具有线性核函数的支持向量机 (SVM)。新指数准确评估 DoA 以说明不同麻醉阶段之间的过渡。对九名患者和另外四名信号质量低的患者进行了测试。在我们测试的 9 名患者中,观察到与双谱 (BIS) 指数的平均相关性为 0.834。DoA 阶段转换分析显示 Choen's Kappa 为 0.809,表明一致性较高。关键词:麻醉深度、统计模型、经验小波变换、二阶差分图
心律不齐,一种异常心律,是心脏病的最常见类型之一。心律不齐的自动检测和分类对于减少因心脏疾病而导致的死亡可能很重要。这项工作提出了使用单通道心电图(ECG)信号的多级心律失常检测算法。在这项工作中,使用心率变异性(HRV)以及形态学特征和小波系数特征可用于检测9种心律失常。统计,熵和基于能量的特征被提取并应用于基于机器学习的随机森林分类器。两项工作中使用的数据均取自4个广泛的数据库(CPSC和CPSC Extra,PTB-XL,G12EC和Chapman-Shaoxing和ningbo数据库),可用于Phancionet。具有HRV和时域形态特征,平均准确度为85.11%,敏感性为85.11%,精度为85.07%,F1得分为85.00%,而HRV和小波系数特征则获得了90.91%的精度,90.91%fivitivity,90.91%fivitivity,90.90%的速度和90%的精确度,90.96%和90%。对仿真结果的详细分析确认,所提出的方案有效地检测了单渠道心电图记录的心律不齐类别。在工作的最后一部分中,使用Raspberry Pi在硬件上实现了建议的分类方案,以实时ECG信号分类。
摘要 结合使用量子传感技术和正交函数(如 Walsh 和 Haar 小波函数)作为量子位的控制序列,可以重建时变磁场的波形。然而,Walsh 和 Haar 小波函数的分段常数性质会在重建波形中引起脉冲形伪影。在本文中,我们提出了一种强大的量子传感协议,通过使用基于高平滑度 Daubechies 小波的控制序列来驱动量子位。时变磁场波形重建时伪影可忽略不计,精度更高。基于 Bloch 球面上表示的直观模型,推导出量子位读数、量子态的累积相位和小波系数之间的基本数学关系。通过使用由 Daubechies 小波函数调制的连续微波控制序列控制每个量子位,可以将产生的量子位读数与指定的小波系数相关联。然后利用这些系数通过逆小波变换重构出更平滑、更准确的时变磁场波形。在不同的 Daubechies 小波参数设计下,对单音、三音和含噪波形进行了仿真,以验证所提方法的有效性和准确性。基于 Daubechies 小波的波形重构方法也可应用于磁共振波谱以及重力、电场和温度的测量。
摘要:脑电图 (EEG) 信号很容易受到肌肉伪影的污染,这可能导致脑机接口 (BCI) 系统以及各种医疗诊断的错误解读。本文的主要目标是在不扭曲 EEG 所含信息的情况下去除肌肉伪影。首次提出了一种新的多阶段 EEG 去噪方法,其中小波包分解 (WPD) 与改进的非局部均值 (NLM) 算法相结合。首先,通过预训练的分类器识别伪影 EEG 信号。接下来,将识别出的 EEG 信号分解为小波系数,并通过改进的 NLM 滤波器进行校正。最后,通过逆 WPD 从校正后的小波系数重建无伪影的 EEG。为了优化滤波器参数,本文首次使用了两种元启发式算法。所提出的系统首先在模拟脑电图数据上进行验证,然后在真实脑电图数据上进行测试。所提出的方法在真实脑电图数据上实现了 2.9684 ± 0.7045 的平均互信息 (MI)。结果表明,所提出的系统优于最近开发的具有更高平均 MI 的去噪技术,这表明所提出的方法在重建质量方面更佳并且是全自动的。
图 1:MRI 图像 a) 干净的 MRI 图像 b) 莱斯噪声图像 小波是一种同时表示频率和时间信息的小波。傅里叶变换使用平滑的无限正弦波来分解信号。与傅里叶变换不同,小波使用不规则的波函数来分割信号,这使得小波成为分析不连续信号的理想工具 [5]。小波变换根据其收缩规则通过硬阈值和软阈值来执行。在硬阈值处理中,带噪小波的系数设置为零。但在软阈值处理中,带噪小波系数根据其子带系数进行调整 [6]。与传统傅里叶变换相比,小波变换在表达具有尖锐峰值和不连续性的函数以及重构和解构信号方面具有一定的优势。图
摘要:要在康复过程中应用基于 EEG 的脑机接口,需要在运动想象 (MI) 期间分离各种任务并将 MI 融入运动执行 (ME)。先前的研究侧重于基于复杂算法对不同的 MI 任务进行分类。在本文中,我们实现了智能、直接、易懂、省时且减少通道的方法来对 ME 与 MI 以及左手与右手 MI 进行分类。记录了 30 名执行运动任务的健康参与者的 EEG,以研究两项分类任务。对于第一项任务,我们首先基于 beta 反弹提出一种“跟进”模式。该方法的平均分类准确率为 59.77% ± 11.95%,对于手指交叉可高达 89.47%。除了时域信息外,我们还使用包括统计、小波系数、平均功率、样本熵和常见空间模式在内的提取方法将 EEG 信号映射到特征空间。为了评估其实用性,我们采用支持向量机作为智能分类器模型,采用稀疏逻辑回归作为特征选择技术,实现了 79.51% 的准确率。第二次分类也采用了类似的方法,准确率达到了 75.22%。我们提出的分类器表现出很高的准确率和智能性。所取得的成果使我们的方法非常适合应用于瘫痪肢体的康复。
定位研究 20 – 22 旨在识别大脑对特定刺激的激活模式,以及连接研究(功能性或有效) ,其重点是研究大脑各区域之间的功能相互作用,无论是在大脑处于休息状态还是在执行特定任务时。 23 – 27 然而,现在众所周知,大脑是高度动态的 28 – 32 因此,为了更全面地了解其功能,需要能够提取大脑记录中的时间信息的方法。与空间域相比,考虑时间域进行分析的 fNIRS 研究数量要少得多。 33 – 40 例如,在参考文献 33 中,通过应用 Higuchi 分形维数算法 41 表明 fNIRS 信号具有高度复杂度。将小波变换应用于 fNIRS 信号,并表明小波系数可用于训练分类器。在参考文献38–40中,熵已被用来评估患者群体(如患有阿尔茨海默病、注意力缺陷多动障碍和脑外伤的患者)中 fNIRS 信号的复杂性,表明它携带的信息可能与疾病有关。所有这些研究表明,在 fNIRS 信号的复杂特征中存在与潜在大脑活动相关的信息。在本文中,我们利用可视性图(VG)提出了一种揭示 fNIRS 时间序列分形特性的方法。VG 是一种最近引入的方法,它将时间序列映射到图形(称为 VG)。正如将要讨论的,构建图的拓扑属性与时间序列的分形和复杂性有关。42、43 与传统的分形分析方法相比,42 VG 在计算上不太复杂,并且已经用于各种研究。 44 – 49 例如,江等人利用心电图表明,采用 VG 分析可以揭示由调解训练引起的动态变化,表现为规律的心跳,这与自主神经系统的调整密切相关。44 朱等人将基于 VG 的方法应用于酗酒识别,表明该方法有望将酗酒者与控制饮酒者区分开来。48 在参考文献 47 中,结果表明,将 VG 应用于脑电图 (EEG) 信号可以提供区分自闭症儿童和非自闭症儿童的特征。在参考文献 49 中,我们已经表明,通过 VG 提取的 GCaMP6 小鼠钙记录的时间特征带有可用于解码行为的鉴别信息。这里需要注意的是,VG 与功能连接研究中常用的基于图论的方法之间的区别。50 , 51 在典型的功能连接研究中,图是在空间域中构建的,即图中的节点对应于通道或体素的位置,并且两个节点之间的链接基于与两个节点相关的时间序列的统计相似性形成,通过相关性等度量来量化。另一方面,正如将在第 2 节中讨论的那样,在 VG 中,节点对应于时间序列中的时间点,并且链接基于时间点之间的自然可见性形成(图 1)。一旦为每个时间序列形成图,就可以提取图度量来表示时间序列的不同属性。在本文中,我们使用 VG 研究两种条件下 fNIRS 时间序列的分形性:当大脑处于休息状态时和当大脑从事任务时。在两种静息状态条件和两种任务条件下记录了 9 名健康男性受试者的 fNIRS 时间序列。从每个时间序列为每个通道和每种条件构建 VG。然后提取可视性图的无标度性 (PSVG) 的功率并在不同条件下进行比较。据我们所知,这是第一项使用 VG 揭示 fNIRS 记录时间序列时间特征的研究,证明了其在识别 fNIRS 记录中的特征方面的可行性,这些特征可用于获得有关大脑功能的新见解。本文的其余部分组织如下。第 2 节介绍了本研究中用于分析的方法。实验设置的详细信息在第 3 节中给出。第 4 节介绍了结果,最后,在第 5 节中提供了一些讨论。第 2 节描述了本研究中使用的分析方法。第 3 节给出了实验装置的详细信息。第 4 节介绍了结果,最后,第 5 节进行了一些讨论。第 2 节描述了本研究中使用的分析方法。第 3 节给出了实验装置的详细信息。第 4 节介绍了结果,最后,第 5 节进行了一些讨论。