马萨诸塞州沃尔瑟姆,2022 年 9 月 28 日——Excelitas Technologies ® Corp. 是一家提供创新、定制光子解决方案的全球技术领导者,它推出了其新型高性能 pco.pixelfly™ 1.3 SWIR 相机。它是 Excelitas pco.pixelfly 高性能机器视觉相机系列的最新成员。这款新型机器视觉相机采用特殊的 InGaAs 图像传感器,在电磁波谱的短波红外、近红外和可见光范围内具有 IMX990 灵敏度。因此,pco.pixelfly 在整个光谱范围内都表现出高灵敏度,在短波红外范围内的灵敏度超过 90%。相机的小像素为 5 µm x 5 µm,可在显微镜中使用小倍率光学元件。由于暗电流低,它可以长时间曝光,量子效率高达 90% 以上。 pco.pixelfly 1.3 SWIR 相机适用于各种应用,包括垃圾分类、智能农业和食品加工质量控制、制药和其他产品包装行业、生命科学研究以及医疗用途,例如手术显微镜和体内成像、体内显微镜和活体显微镜。Excelitas 将于 2022 年 10 月 4 日至 6 日在德国斯图加特举办的 VISION Stuttgart 展会期间在其展位上现场演示配备 Excelitas Optem ® FUSION 微成像镜头系统的 pco.pixelfly 1.3 SWIR 相机(10 号展厅,E51)。
本文介绍了获取、分析和处理光信号的可能性和方法,以便识别、确定和应对当代战场上的威胁。本文阐述了在电磁波谱的光波段进行电子战的主要方式,包括获取光发射器特征以及紫外线 (UV) 和热 (IR) 特征。本文讨论了描述激光辐射发射的物理参数和值,包括它们在创建光学特征方面的重要性。此外,已经证明,在将光信号转换为特征时,只能应用其光谱和时间参数。本文的实验部分证实了这一点,其中包括我们对三种双目激光测距仪的光谱和时间发射特性的测量。本文还表明,通过简单的配准和快速分析(涉及比较“日盲”波段紫外线特征的发射时间参数),可以快速、准确地识别各种事件。对于红外特征也是如此,需要比较几种波长的记录信号幅度。通过记录并分析训练场军事演习期间发生的几次事件的信号,实验证实了紫外线特征的正确性,这些事件包括火箭推进榴弹 (RPG) 发射和击中目标后的爆炸、三硝基甲苯 (TNT) 爆炸、穿甲弹、尾翼稳定脱壳穿甲弹 (APFSDS) 或高爆弹 (HE)。最后一部分描述了一个拟议的发射器模型数据库,该数据库是通过分析和将记录信号转换为光学特征而创建的。© 2020 中国兵器学会。由 Elsevier BV 代表科爱传播有限公司提供出版服务。本文为 CC BY-NC-ND 许可下的开放获取文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
引言 2023 年是射电天文学诞生 90 周年:人们普遍认为,这个天文学大分支学科的“诞生”源于 1933 年 5 月 5 日《纽约时报》头版的一篇专栏文章,文章介绍了卡尔·詹斯基 [1] 发现“宇宙噪声”。自 20 世纪 60 年代中期以来,在这一时期的近三分之二的时间里,一种名为甚长基线干涉测量 (VLBI) 的射电天文学技术在观测天体时(前提是它们在电磁波谱的无线电领域发射)的角分辨率方面保持着领先地位。1967 年,三个美国小组和一个加拿大小组首次实验演示了这项技术(见 [2] 第 1.3.14 节及其中的参考资料)。两年前 [3] 中就曾讨论过这项技术。有趣的是,后者在 1963 年的草案版本中包含一段话,提到了在航天器上放置无线电干涉仪天线的可能性,目的是实现地面仪器根本不可能达到的角分辨率。由于当时苏联对所有涉及太空探索的主题实行严格审查,这一段话被从最终版本中删除。列夫·A·列别捷夫 (1987)、根纳迪·肖洛米茨基 (1991)、尼古拉·卡尔达肖夫 (2016) 和列昂尼德·马特维延科 (2018) 在四次私人通信中独立向作者证实了后者。因此,如果考虑到 20 世纪 60 年代上半叶首次提到太空 VLBI,那么到现在为止,这个话题确实有着一段可观的历史。对于反射天线(广泛使用的专业俚语是“碟形天线”),分辨率由衍射极限 λ/D 定义,其中 λ 是波长,D 是反射器的直径,就像“传统”光学天文学的情况一样。对于典型的无线电领域分米到米波长,直径数十米的实惠碟形天线可以达到数十角分的角分辨率,远低于地球光学望远镜的典型角分辨率,后者为秒级
这些是我在上海交通大学致远学院教授的一门课程的讲义(可在 www.youtube.com/derekkorg 上找到),尽管第一稿是为我在德国埃尔朗根-纽伦堡大学教授的上一门课程而写的。它是为只接受过量子力学基础培训的学生设计的,因此,该课程适合各个层次的人(例如,从本科毕业一直到博士阶段)。这些笔记还在进行中,这意味着一些证明和许多图表仍然缺失。然而,我已尽我所能,以这样一种方式编写所有内容,即使有这些缺失的部分,读者也可以自然地理解所有的论证和推导。另外,还剩下几章需要添加,其中一章是关于分析开放系统动力学的数学方法,另一章介绍了目前大量实验平台,这些笔记中开发的工具和想法目前正在这些平台上实施。首先,我先说几句关于讲座主题的话。量子光学研究光与物质之间的相互作用。我们可以将光视为电磁波谱的光学部分,将物质视为原子。然而,现代量子光学涵盖了各种各样的系统,因此更及时的定义可能是“低能量子电动力学”。这种情况包括,例如,超导电路、受限电子、半导体中的激子、固态缺陷或微观、中观和宏观系统的质心运动。此外,量子光学是呈指数级增长的量子信息处理和通信领域的核心,无论是在概念层面还是在技术实现层面。量子光学中发展起来的思想和实验也让我们能够重新审视与凝聚态物理甚至高能物理相关的多体问题。此外,量子光学有望在桌面实验中检验量子力学以及标准模型以外的物理学的基本问题。量子光学的显著特点之一是它处理的是非孤立系统,即它们会向周围环境泄漏能量和信息。虽然这实际上是真实物理系统中最常见的情况,但这并不是学生在标准量子力学课程中通常遇到的情况。本课程的很大一部分致力于填补这一空白:它介绍了许多用于描述开放量子光学系统的工具和方法。除了实际用途之外,这些方法还具有深刻的物理解释,使学生更好地理解量子力学。因此,量子光学和开放系统是未来量子物理学研究人员不容错过的课题。我必须强调,为了成长为一名优秀的量子物理学家,尽可能多地阅读这些主题的资料非常重要。因此,我总结了一份参考文献清单,这些参考文献在我职业生涯的不同阶段都非常有用 [ 1 – 21 ]。最后,我要感谢过去几年仔细阅读这些讲义并帮助我完善讲义的许多学生,以及提出改进建议或将其传播给学生的几位同事。
1.1 简介 遥感 (RS),也称为地球观测,是指利用电磁辐射(光)获取有关地球表面物体或区域的信息,而无需直接接触该物体或区域。所以,遥感是人们的日常工作。阅读报纸、观察前面行驶的汽车、在课程中观察讲师讲课都是遥感活动。人眼记录这些物体反射的太阳光,大脑解读颜色、灰色调和强度变化。接下来,这些数据被转换成有用的信息。然而,人眼只能看到整个电磁波谱的一小部分,即大约 400 到 700 nm。在遥感中,各种工具和设备被用于使 400 到 700 nm 范围之外的电磁辐射对人眼可见,尤其是近红外、中红外、热红外和微波。遥感越来越多地用于获取有关环境过程的信息,如农作物生长、土地覆盖变化、森林砍伐、植被动态、水质动态、城市发展等。在本章中,我们简要概述了遥感的历史并总结了遥感的基本概念。1.2 遥感的早期阶段(直到 2000 年左右)1859 年,加斯帕德·图尔纳雄 (Gaspard Tournachon) 乘坐气球拍摄了一张巴黎附近一个小村庄的斜视图。从这张照片开始,地球观测和遥感时代就已开启。很快,世界各地的人们便纷纷效仿。美国内战期间,气球航空摄影在揭示弗吉尼亚防御阵地方面发挥了重要作用。同样,美国内战期间的其他科学技术发展也加速了摄影、镜头和空中应用这项技术的发展。尽管遥感的太空时代在南北战争之后还很遥远,但早在 1891 年,德国就已授予成功设计的带成像系统的火箭专利,专利名称为:“用于获取地球鸟瞰照片的新型或改进型设备”。该设计包括一个由降落伞回收的火箭推进式摄像系统。表 1.1 显示了遥感发展中的几个重要日期。下一个快速发展时期发生在欧洲,而不是美国。第一次世界大战期间,飞机被大规模用于照片侦察。事实证明,飞机是比气球更可靠、更稳定的地球观测平台。在第一次世界大战和第二次世界大战之间,民用航空照片开始使用。当时,航空照片的应用领域包括地质、林业、农业和制图。这些发展导致了相机的改进,电影和解说设备。航空摄影最重要的发展