简介现在,许多采用不同技术制造的高动态范围 (HDR) 和宽色域 (WCG) 显示器都已在市场上销售。 HDR10、杜比视界和混合对数伽马 (HLG) [1-2] 等新高清视频标准均将 ITU-R BT.2020 作为默认色域。 此外,HDR 不仅需要广泛的色域,还需要比标准动态范围 (SDR) 高得多的亮度动态范围。 例如,HDR10 [2] 的最大白色亮度为 1000cd/m2,而杜比视界 [3] 的最大白色亮度高达 10000cd/m2。 色域始终是一种与亮度范围无关的限制性属性。 相反,色彩体积同时涉及色域和亮度范围,并且似乎是比较应该具有大色域和扩展亮度范围的显示器的更好的描述符。 我们已经提出使用色彩体积来分析显示器的视角色彩测量 [4-6]。在这些研究中,使用了标准 L*a*b* CIE 1976 和 L*u*v* 色彩空间,并计算了不同显示器的色彩体积的几个参数。国际显示器计量委员会也对该方法进行了标准化 [7]。在本文中,我们使用杜比实验室最近提出的 ICtCp 色彩空间,该空间非常适合 HDR 和 WCG 内容 [8]。我们将这个新色彩空间与标准 L*a*b* CIE 1976 色彩空间 [9] 进行了比较,分析了在两个 HDR 显示器上测得的色彩视角属性:一台 QLED 电视和一台 OLED 电视。使用最大角度孔径为 ±80° 的 EZContrast 傅里叶光学视角系统在白色、黑色、红色、绿色、蓝色、洋红色、黄色和青色状态下进行色彩测量。
图 1:EGT 模型中的确定性最优策略。(GLY-VOP-DEF) 三角形代表各个亚群所有可能的相对丰度。由于该策略是 bang-bang 策略,我们使用黄色背景(其中应以 MTD 速率使用药物)和蓝色背景(其中根本不应使用药物)来显示它。从初始状态 (q0,p0) = (0.26,0.665)(洋红色点)开始,子图显示 (a) 从真正确定性驱动的系统 (2.14) 中找到的最优轨迹,成本为 5.13;(b) 在确定性最优策略下生成的两个代表性样本路径,但受到随机适应度扰动的影响(较亮的一个成本为 3.33,而另一个成本为 6.23); (c) 使用 10 5 个随机模拟近似的累积成本 J 的 CDF。在 (a) 和 (b) 中,轨迹的绿色部分对应于不开药,轨迹的红色部分对应于以 MTD 率开药。在 (a) 中,确定性情况下的价值函数的水平集以浅蓝色显示。在 (c) 中,蓝色曲线是使用确定性最优策略 d ⋆ 生成的 CDF。其在成功条件下观察到的中位数和平均值分别为 4.95 和 4.91。棕色曲线是使用基于 MTD 的疗法生成的 CDF,在此示例中,它还最大限度地提高了“不受预算约束”的肿瘤稳定的机会。其在成功条件下观察到的中位数和平均值分别为 5.95 和 5.96。橙色和粉色曲线显示了两种不同的阈值感知策略的 CDF(分别为 ¯ s = 4 . 5 和 ¯ s = 5)。每个曲线上的大点表示不超过相应阈值的最大化概率。术语“阈值特定优势”是指在 ¯ s 时,d ¯ s ∗ 的 CDF 高于所有其他策略的 CDF。
图1内源性HCAST表达可保护急性离体损伤模型中的轴突完整性。三角形(TS)的神经肌肉制剂(WT,n = 3)和Hcast(n = 3)小鼠用抗绞中AB(AGAB)在体内进行内部化研究(A,B),以及(损伤)或没有(对照)正常人(nHs)(nhs)的position(Corsem and Huspect)(CORCE)(CORCE)(cosect)(conterum and)(nhs),以供应(nhs),以供应(nhs),以供介绍。a)WT和Hcast TS运动神经末端(MNT)在37 C下孵育60分钟时,表面AGAB显着降低,而不是0分钟。(b)在用Triton X-100通透性后,在60分钟组中,MNT的总AGAB强度在两种基因型中都恢复正常,这表明AGAB内在化。(c)与对照相比,受伤的WT和Hcast TS的MNT的补体(绿色,E)强度显着增加。(d)神经丝(NF-H,洋红色,E)与对照相比,受伤的WT组织中MNT处的免疫染色强度显着降低,但受到Hcast受伤组织的对照水平的保护。(e)远端神经染色的说明性图像。btx(星号,橙色)和髓磷脂碱性蛋白(MBP,箭头,橙色)分别用于识别Ranvier(Nor)的Mnt和远端节点。虚线的大纲表示没有NF-H染色的位置。比例尺=5μm。 dotplots =平均±S.E.M.在比较治疗效果的数据上进行了未配对的一尾t检验(A,B&C); *表示p <.05。双向方差分析比较治疗(对照与损伤)或基因型(WT vs Hcast),然后对D.的数据进行了Tukey的事后多重比较测试。 * p <.05,***表示p <.001
完整的项目列表,在排名的订单现场艺术与活动中,hal l*,port Angeles,p。 4 $ 2,000,000 Tacoma Arts Live *,Tacoma,p。 5 $ 2,000,000消防山艺术委员会 *,莫顿,p。 6 $ 217,349 Sequim City Band *,Sequim $ 401,206 Imagine Children's Museum *,Everett,P.7 $ 75,000 Seattle Theate Group, * Seattle,Seattle,p。 8 $ 490,588斯波坎谷表演艺术中心 *,斯波坎谷,第1页。 9 $ 1,848,557 Siff *,西雅图,p。 10 $ 500,000西雅图曲目剧院 *,西雅图,p。 11 $ 1,200,000 Orcas Center *,Eastsound,p。 12 $ 350,000康沃尔艺术学院 *,西雅图,p。 13 $ 350,000 Arte Noir *,西雅图,p。 14 $ 750,000 Pickford Film Center *,贝灵汉,第1页。 15 $ 550,000 Pacific公共媒体(KNKX) *,西雅图,p。 16 $ 800,000 mopop *,西雅图,p。 17 $ 200,000西雅图儿童剧院 *,西雅图,p。 18 $ 750,000 Vashon艺术中心,Vashon,p。 19 $ 115,000西雅图交响乐团,西雅图,p。 20 $ 250,000 Theatre33,Bellevue,p。 21 $ 100,000 Richland球员,Richland $ 350,000 Sea Mar社区健康中心,西雅图,p。 22 $ 350,000大电影院,塔科马$ 500,000洋红色剧院,温哥华,p。 23 $ 7,300,西雅图,第五大街剧院,p。 24 $ 550,000级联公共媒体,西雅图,p。 25 $ 1,000,000 Highland Park改善俱乐部,西雅图,p。 26 $ 400,000,第七街,Hoquiam $ 145,000 Gladish表演艺术中心,Pullman,p。 27 $ 600,000林肯剧院中心,弗农山,第2页。 28 $ 350,00 Clymer Foundation,Ellensburg $ 100,000 Ghostlight Productions,Angeles Port Angeles $ 200,000 Sahak Khemararam佛教协会,西雅图$ 500,000 $ 500,000总计$ 18,000,000 *表示该项目已包含在州长的预算提案中4
图2幼虫SEZ的感觉域:长度截面视图。(a,b)幼虫晚期SEZ的示意性侧面视图(a)和腹侧视图(b)。感觉隔室的颜色编码如(a)底部的钥匙所述。进入神经胶质的神经是阴影灰色的;神经组边界和柱状神经胶质结构域由孵化线表示。(c - e)用PEB-GAL4> UAS-MCD8-GFP(绿色;感觉轴突)标记的第三龄幼虫标本的共聚焦部分的Z-Projections。抗神经毒素(洋红色)标记次生谱系和区域; Neuropil在所有面板中均由抗DN-钙粘蛋白(蓝色)标记。(c)中央神经胶质结构域的副臂板z预测。(d,e)表面水平的水平投影(d;神经皮腹面上方约10米)和中央水平(E;腹表面上方约20 l m;参见面板H)。孵化的线划分柱神经型结构域的边界,如随附的纸张所定义(Hartenstein等,2017)。在PEB-GAL4阳性区域的(E)点中的箭头从CSC感觉域继续向前向中央trito-Cerebrum前进; (e)中的箭头指示通过触角神经进入的感觉传入,然后绕过触角(Al)到达tritoceRebrum。(f,g)。第三龄幼虫SEZ晚期的副臂切片(F)和数字旋转的额叶(G)的Z-projctions显示了PEB-GAL4阳性感觉末端(绿色)和纵向轴突段与Anti-Fasticlin II(Magenta)标记的纵向轴突。绿色孵化线表示(d)和(e)中显示的水平平面。(H)幼虫SEZ的示意性横向视图,说明了该图和图3中的面板(d,e)中显示的Z射击平面。Blue hatched lines, oriented perpendicularly to the neuraxis and roughly parallel to neuromere boundaries (grey hatched lines), represent frontal planes at level of anterior half of prothoracic segment (T1ant), posterior half of prothoracic segment (T1post), tritocerebrum (TR), mandibula (MD), maxilla (MX), and labium (lb),图3的面板(a - f)中显示。bar:25 L m(c - g)
Sourav Verma DOI:https://doi.org/10.22271/allresearch.2021.v7.i2e.8286 摘要 已经开发了几种使用人工智能制作音乐的音乐软件程序。与它在其他领域的应用一样,在这种情况下,人工智能也模拟了心理任务。一个突出的特点是人工智能算法能够根据获得的信息进行学习,例如计算机伴奏技术,它能够聆听和跟随人类表演者,从而能够同步表演。人工智能还推动了所谓的交互式作曲技术,其中计算机根据现场音乐家的演奏创作音乐。音乐还有其他几种人工智能应用,不仅涵盖音乐创作、制作和表演,还涵盖音乐的营销和消费方式。除了使用人工智能制作音乐的程序外,还开发了几种音乐播放器程序,使用语音识别和自然语言处理技术进行音乐语音控制。关键词:谷歌洋红色。 Melodrive spotify brain FM 简介 人工智能 人工智能(AI)是计算机程序或机器以类似于人类的方式思考和学习的能力。它能够在一定程度上模拟人类智能,可以执行不同的任务和解决问题。 “人工智能”一词最早出现在1956年美国达特茅斯会议期间,但由于数据量的增加、算法的先进以及计算能力和存储的改进,人工智能技术和应用如今已变得更加流行和强大。 众所周知,人工智能研究已经影响了许多主要行业,而音乐产业当然是其中之一。 人工智能在音乐领域的简史 1# 1951年,英国数学家阿兰·图灵首次创作了计算机生成的音乐。艾伦·图灵是一位计算机科学家、哲学家和密码学家,在破解纳粹的恩尼格玛密码中发挥了关键作用。这段录音是 69 年前由英国广播公司 (BBC) 的一个室外广播部门在英国曼彻斯特的计算机实验室录制的。这台用来生成旋律的机器占据了实验室一楼的大部分空间,是由 A. 图灵亲自建造的。它创作了几首旋律,包括“上帝保佑国王”和“咩,咩黑羊”。虽然图灵在计算机中编写了第一个音符,但他对将它们串成曲调不感兴趣,所以这项工作由一位名叫克里斯托弗·斯特雷奇的学校老师完成。2# 1957 年,伊利诺伊大学香槟分校的作曲家 Lejaren Hiller 和数学家 Leonard Isaacson 编写了 ILLIAC I (伊利诺伊自动计算机),这是第一台完全由美国教育机构建造和拥有的计算机,生成作曲素材,创作出完全由人工智能编写的音乐作品——《伊利亚克弦乐四重奏组曲》。3#1960年,俄罗斯研究员R.Kh.扎里波夫发表了全球第一篇利用URAL-1计算机进行算法作曲的论文——《音乐作曲过程的算法描述》。
灵敏度 - 数字成像 - 像素 - 量子效率 - 复位 - 正向偏置 - 区域板 - 通道电位 - 全帧成像器 - PPD - 采样频率 - 光子散粒噪声 - VGA - 产量 - 暗固定模式噪声 - 反向偏置二极管 - 收集效率 - 逐行扫描 - 动态范围 - 薄膜干涉 - 固定光电二极管 - 光谱灵敏度 - 饱和电压 - 双线性成像器 - 光子传输曲线 - 行间传输图像传感器 - 电荷耦合器件 - 微透镜 - 暗电流散粒噪声 - E SD - 条纹滤波器 - 数码相机 - 拼接 - 高斯分布 - 硅 - 热噪声 - 传感器结构 - 亮度 - 浮动扩散放大器 - 转换因子 - 闪烁 - MOS 电容 - 辐射单位 - 移位寄存器 - 带隙 - 黄色 - 补色 - 光电门 - 列放大器 - 纹波时钟 - 反转层 - CMOS 成像器 - 对数响应 - 普朗克常数 - 电荷泵 - 阈值电压 - 埋通道 CCD - 暗电流 - 噪声等效曝光 - MSB - 转换因子 -缺陷像素校正 - 边缘场 - 分辨率 - 双相传输 - 正透镜 - 角响应 - PRNU - 波长 - 帧传输成像器 - 电荷注入装置 - 测试 - 通道定义 - 摄像机 - 光晕 - 隔行扫描 - 彩色滤光片 - 自动白平衡 - 虚拟相位 - 拖尾 - 单斜率 ADC - 表面电位 - 耗尽层 - 垂直防光晕 - 多相钉扎 - 电子快门 - PAL - 埃普西隆 - 相关双采样 - 蓝色 - CIF - 洋红色 - 填充因子 - 延迟线 - 线性响应 - 规格 - 结深 - 复位噪声 - 线性图像传感器 - 光学低通滤波器 - 二氧化硅 - 光电二极管 - 勒克斯 - 闪光 ADC - 定时抖动 - 拥有成本 - 封装 - 光刻 - 有源像素传感器 - DSP - 积分时间 - 三相传输 - 光子通量 - 晶圆级封装 - 电荷泵 - 滤光轮 - 有效线时间 - 吸收深度 - 玻尔兹曼常数 - 弱反转 - LSB - 水平消隐 - 光栅滤波器 - 帧抓取器 - 原色 - 拜耳模式- 缩放 - 功耗 - 单色仪 - 模拟数字转换 - 光固定模式噪声 - 无源像素传感器 - 彩色棱镜 - SGA - 氮化硅 - 温度依赖性 - 负透镜 - sigma delta ADC - 混叠 - 插值 - 传输效率 - F 数 - 红色 - 动态像素管理 - 栅极氧化物 - 热漂移 - 热噪声 - 扩散 MTF - 有源像素传感器 - 泄漏器 - 1/f 噪声 - 青色 - 信噪比 - 孔径比 - 奈奎斯特频率 - 非隔行扫描 - 像素内存储器 - 四相传输 - 技术 - kTC 噪声 - 辐射损伤 - 离子注入 - MOS 晶体管 - 内透镜 - 光度单位 - 表面通道 CCD - 延时和集成成像器 - 宽高比 - 绿色 - NTSC - 单芯片相机 -可见光谱 - 调制传递函数 - 同步快门 - 马赛克滤光片 - 背面照明 - 色彩串扰 - 量化噪声 - 逐次逼近 ADC - 压缩 - 漏极 - 多晶硅 - 堆叠 - 光子转换 - 飞行时间 - 吸收系数 - DIL - 收集体积 - 孔 - 四线性成像器 - 单相传输 - 填充和溢出 - 收集效率 - 垂直消隐 - 源极跟随器 - 雪崩倍增 - 辐射 - 横向防晕 - 晶圆上测试 - 自感场 - 自动曝光 - 泊松分布 - 电荷复位 - 伽马