摘要:跨介质飞行器是一种既能在水中潜航,又能在空中飞行的新型概念飞行器。本文基于多旋翼无人机入出水结构模型,设计了一种新型水空多介质跨介质飞行器。基于设计的跨介质飞行器结构模型,利用OpenFOAM开源数值平台进行单介质气动特性分析和多介质跨介质流动分析。采用滑移网格计算单介质空气旋翼和水下螺旋桨的旋转流动特性。为防止网格运动变形引起的数值发散,采用重叠网格法和多相流技术对跨介质飞行器入出水进行数值模拟。通过以上分析,验证了跨介质车辆在不同介质中的流场特性,并得到了跨介质过程中不同入水角度下车体载荷及姿态的变化情况。
抗冲击性评估:冲击测试单元可以测量聚合物对冲击力的抵抗力,这是各种应用的关键参数。聚合物加工和特性分析:配备标准测试模具的压缩成型机可以制造特定形状的聚合物样品以进行特性分析。光催化活性分析:光催化反应器提供了一个研究聚合物光活化特性的平台,这对于光降解和污染物修复等领域的应用很有价值。增材制造:聚合物 3D 打印机有助于创建复杂的三维聚合物结构,为创新材料设计和开发打开了大门。热分析:真空炉可以研究聚合物的热行为,包括其玻璃化转变温度和热稳定性。流变特性分析:布鲁克菲尔德粘度计/流变仪可以测量聚合物在各种条件下的流动特性,从而深入了解其加工行为。化学品的安全处理:通风柜确保在安全的环境中使用聚合物合成和改性中使用的潜在危险化学品。
本文介绍了关于大脑供血动脉和 Willis 环 (CW) 模型中的流动的实验结果。血管模型是根据解剖标本准备的。考虑了最典型的动脉形状和尺寸。提供了 6 个特征点的压力分布,以及大脑前部、中部和后部的平均流速。在复制生理状态(即供血动脉完全畅通时)和病理条件下进行了测试,其中颈内动脉和椎动脉在一侧或两侧被阻塞。将所得结果与基于线性和非线性流动模型的计算机模拟结果进行了比较。为了估计血管段的非线性阻力,提出了两个现象学公式。从实验中获得的值与非线性计算机模型中记录的值之间的高度相关性证明了所提公式的实用性。验证了以下假设:血管段的流动特性非线性很大程度上是由其曲折和长度相对于直径较小造成的。非线性效应在供血血管病理性闭塞的情况下尤为明显。
已经开发出测试方法来比较聚醚醚酮 (PEEK) 热塑性聚合物在准静态、高应变率拉伸试验和疲劳载荷下的机械响应和失效行为。拉伸试验的应变率从 0.0003 s − 1 到 60 s − 1,并在不同的温度下进行,以比较样品在不同测试条件下的流动特性。还进行了不同幅度和频率的疲劳试验,以评估循环载荷期间的温升及其对断裂行为的影响。结果表明,与准静态行为相比,动态拉伸会导致脆性断裂;而在高频率和载荷幅度的疲劳试验下,材料不仅表现出更延展的行为,而且还清楚地表明诱导自热对 PEEK 的模量和机械性能有显著的影响。因此,本文的主要目的是讨论诱导温度及其对断裂表面的影响。热疲劳在提高温度和缩短疲劳寿命方面起着非常重要的作用;因此,有必要了解热疲劳发生的条件以及消耗的能量。从实验结果和计算中获得的方程可以估算疲劳试验中的能量耗散,它是循环和频率的函数。
已经开发出测试方法来比较聚醚醚酮 (PEEK) 热塑性聚合物在准静态、高应变率拉伸试验和疲劳载荷下的机械响应和失效行为。拉伸试验的应变率从 0.0003 s − 1 到 60 s − 1,并在不同的温度下进行,以比较样品在不同测试条件下的流动特性。还进行了不同幅度和频率的疲劳试验,以评估循环载荷期间的温升及其对断裂行为的影响。结果表明,与准静态行为相比,动态拉伸会导致脆性断裂;而在高频率和载荷幅度的疲劳试验下,材料不仅表现出更延展的行为,而且还清楚地表明诱导自热对 PEEK 的模量和机械性能有显著的影响。因此,本文的主要目的是讨论诱导温度及其对断裂表面的影响。热疲劳在提高温度和减少疲劳寿命方面起着非常重要的作用;因此,有必要了解热疲劳发生的条件以及消耗的能量。从实验结果和计算中获得的方程可以估算疲劳试验中的能量耗散,它是循环和频率的函数。
在喀斯特含水层中,地下水充电的性质在地质时间内控制了spelease,它直接影响当前含水层中水的数量和质量。喀斯特ter虫中有两种基本的地下水补给类型:自动源性和同源性(Shuster and White,1971)。自体充电可以进一步分为分散和离散充电。同种异体和离散的充值模式是污染物运输到地下水的尤其脆弱的环境。同种异性充电到喀斯特含水层发生,在表面径流中耗尽大面积不溶性岩石或低渗透性土壤的土壤直接流向相邻的可溶性汽车底基岩(Palmer,2000年)。对喀斯特含水层充电沿着下沉或丢失的溪流通道通过多孔的河床沉积物或流床中的裂缝渗入,或者通过溪流渗透而失去溪流通道(White,1988)。在此设置中,喀斯特含水层显示出表面流的流动特性,对预提取的响应相对较快,并且在几个数量级上的复活放电变化。在由Allo-
悬停四旋翼飞行器在各种湍流风况下的定位保持最近备受关注,因为它有可能在复杂环境中应用。已经开发出各种类型的控制算法来提高四旋翼飞行器在这种风况下的性能。这些需要通过飞行四旋翼飞行器本身进行测试和验证。一种快速且低成本的解决方案是通过改造现有风洞来建立测试台,以重现这种风况。为了进行此类实验,马来西亚博特拉大学 (UPM) 将开放式喷射风洞连接到现有的开环风洞,该风洞最初的测试面积为 1 米乘 1 米。通过连接具有发散形状的开放式喷射风洞,测试段面积的直径增加到 2 米,确保有足够的空间来操纵和悬停实验四旋翼飞行器。在测试段前连接一个沉降室来表征输出风。开口处的最大风速为 8 米/秒。利用风速计对延伸风洞的流动特性进行了分析,获得了距开口四个不同距离处的速度分布,发现风速分布和湍流强度模拟了室外风湍流条件,可用于测试四旋翼悬停控制算法。
牧豆胶 (PRG) 是一种亲水性聚合物,可从非洲牧豆种子中获得。本研究调查了该胶在十二指肠靶向输送奥美拉唑中的应用。使用 5% 至 30% 的各种浓度的 PRG 通过湿法制粒配制奥美拉唑颗粒,并测定颗粒的流动特性。然后将颗粒压制成片剂。获得了片剂在 pH 1.2 溶解介质中以及 pH 5.5 下的释放曲线。将这些配方与含有 15% 羟丙基甲基纤维素的片剂进行了比较。发现颗粒的 Hausner 比率范围为 1.05 至 1.17,Carr 指数范围为 5.0% 至 14.0%。测试片剂的抗压强度范围为 6.2 至 6.9 kgf。含有 5%、10% 和 15% PRG 的配方在胃 pH 下表现出大量药物释放,因此只有极少量的药物到达目标部位(十二指肠),而含有 20% 和 30% 胶的配方在相当于十二指肠部位的 pH 下分别能够输送 76% 和 82% 的药物。这项研究表明,浓度为 20-30% 的 PRG(从非洲楝种子中提取)适用于奥美拉唑片剂的配方,从而提供一种靶向十二指肠输送药物的方法。
本研究探讨了磁流体力学 (MHD) 和生物对流对混合纳米流体在具有不同基液的倒置旋转锥体上的流动动力学的综合影响。混合纳米流体由悬浮在不同基液中的纳米颗粒组成,由于磁场和生物对流现象之间的相互作用而表现出独特的热和流动特性。控制方程结合了 MHD 和生物对流的原理,采用数值方法推导和求解。分析考虑了磁场强度、锥体旋转速度、纳米颗粒体积分数和基液类型等关键参数对流动行为、传热和系统稳定性的影响。结果表明,MHD 显著影响混合纳米流体的速度和温度分布,而生物对流有助于增强混合和传热速率。此外,基液的选择在确定混合纳米流体系统的整体性能方面起着关键作用。这项研究为优化在 MHD 和生物对流效应突出的应用中利用混合纳米流体的系统的设计和操作提供了宝贵的见解。关键词:磁流体动力学 (MHD);生物对流;混合纳米流体;倒置旋转锥;基液;纳米粒子;流动动力学 PACS:47.65.-d、47.63.-b、47.35. Pq、83.50.-v
轨道空气动力学研究卫星 (SOAR) 是一项立方体卫星任务,预计于 2021 年发射,用于研究极低地球轨道 (VLEO) 上不同材料与大气流动状态之间的相互作用。提高对这些高度的气体-表面相互作用的了解以及识别可以最大限度减少阻力或改善空气动力学控制的新型材料,对于设计未来可以在低高度轨道运行的航天器非常重要。这类卫星可能更小、开发成本更低,或者可以提供改进的地球观测数据或通信链路预算和延迟。为了实现这些目标,SOAR 具有两种有效载荷:i) 一组可操纵的翼片,能够将不同的材料或表面处理暴露给具有不同入射角的迎面而来的气流,同时还提供可变的几何形状以研究空气稳定性和空气动力学控制;以及 ii) 具有飞行时间能力的离子和中性质谱仪,可以精确测量原位流动成分、密度和速度。利用精确的轨道和姿态确定信息以及测得的大气流动特性,可以研究卫星在轨道上受到的力和扭矩,并计算出气动系数的估计值。本文介绍了 SOAR 任务的科学概念和设计。描述了使用最小二乘轨道确定和自由参数拟合过程从测得的轨道、姿态和原位大气数据中恢复气动系数的方法,并估计了解析的气动系数的实验不确定度。结果表明,卫星设计和实验方法的结合能够清楚地说明阻力和升力系数随不同表面入射角的变化。阻力系数测量的最低不确定度位于约 300 公里处,而升力系数测量的不确定性随着轨道高度降低至 200 公里而提高。