1 GRAN ROMANO - 宪法 57 1 7 W. Leon - W. Mancilla 3cp 10va 11va181224 1,100 3-2 20 3/4 1:08:64 54.4 434 1 Mirafiori - 白色,黄色十字,蓝色袖子,Gor 31 2 NATURALDE NUEVE - 前进三月 57 2 4 JMsoto - V. Moris 5va 13ha 11ca161224 1,200 FAR 1:11:83 69.8 434 1 Aleph - 白色,“w”,黑色手镯和帽子。 31 3 MUYINTENSO - Bad Daddy 57 3 5 R. Fuenzalida - L. Salinas T. 第三名 第九名 第五名 091224 1,100 1 10 1/2 1:08:20 27.4 479 1 Sonrisal - 蓝色,半浅蓝色,蓝色袖子,浅蓝色拳头 31 4 LORENZAEMILIA- Cupid 57 4 4 MA Donoso - W. Biava Rojas 第 11 名 第 14 名 第 14 名041224 1,100 1 16 3/4 1:10:32 255.5 423 1 Lc Torres - 黄色,V 形袖章,手镯和帽子 31 5 ELOPORTUNO - Omayad 57 5 4 GA Perez - B. Gomez 第三名 第 8 名第四名 231224 1,100 1 8 1:08:51 7.1 480 1 Le Mont – 蓝色,黄色条纹,臂章和帽子。 9 6 RISIKO - Indy Dancer 57 6 5 V. Cifuentes - R. Olivares 第 10 名 第 16 名 cp 第 9 名 18 12 24 1,100 1 17 1:09:58 98,432 1 Margal - 灰色 V 形 Ama、橙色护肩、黑色袖子 31 7 WATER CLOUD - Lookin At Lucky 57 7 6 RS Dores - E. Donoso 第 4 名 cp 第 11 名 第 11 名 13 1 124 1,100 3-2 14 1:08:68 19.1 442 1 Los Felipes - 红色、绿色列表和帽子。 7 8 MY GREAT FRIEND- Tumblebrutus R-7 57 8 9 I. Martinez - R. Bernal T. 9th 15vp 3vp100724 1,000 1 2 1/2 0:58:35 31.7 459 1 Olga Luisa - Lila Franja Solferino,Mangas Verde,gor 31 9 CREED - Tourist 57 9 4 CE Urbina - O. Urbina 10th 6th 8th 181124 1,100 2-1 9 1/4 1:09:62 37.7 417 1 Nimble - Purple Chevrons CalypsoMgas Blue Rings Mo 31 10 SHANGHAI EXPRESS - Shanghai Bobby R-13 57 10 8 K. Espina - N. Espina L. 8th 1vp 2vp 140224 1.000 6-2 3/4 0:58:68 79.4 449 1 Ada Faride - 红色、黑色条纹、袖子和帽子。 2.5 11 LLENADE AMISTAD - California Chrome 57 11 5 J. Castillo - W. Mancilla 第三名 第五名 第六名 231224 1,100 3-2 7 3/4 1:09:13 5,456 1 French Potato - Blanco, Mangas Negro YBlancoACuadri 31 12 JAPONEITOR - Hiraboku Deep (jap) 57 12 4 J. Medina - R. Silva 第四名 第八名 第四名 181224 1,100 1 6 3/4 1:09:58 4,411 1 Barabaraba - Cafe YVerde ACuadritos,Mangas Verdes, 5 13 CALIZ DE PLATA- Dylan Thomas 57 13 4 D. Carvacho - R. Bernal T. 第三名 第一名 第十三名240624 1,100 3-2 12 1/4 1:08:07 22.3 460 1 Bruno Alonso - 黑色,Str 橙色,M.橙色,Str 黑色 31 14 CONTIGO SI QUIERO - Goldencents 57 14 5 N. Ramirez - C. Gonzalez 12cp 8cp 7ca061224 1,000 2-1 6 1/4 1:00:00 27 499 1 Ojotaeme - 蓝色, 条纹 & 黄色袖子, 带帽 Ca 11 15 DARCYPINK - Dylan Thomas 57 15 4 S. Gonzalez - R. Olivares 13th 12th 10th181224 1,100 1 23 1:09:58 70.1 415 1 Margal - 灰色 V 形 Ama,橙色护肩,Ne 31 袖子 16 ELROMPE HIELO - 长腿叔叔 R-11 57 16 5 F. Olivares - R. Olivares 4va 1vp 4vp 010524 1.000 11-2 2 0:57:10 9,5 459 1 Margal - 灰色 V 形 Ama,橙色护肩,Ne 11 袖子
介绍在此白皮书中,我们将探讨与数字设备发出的蓝光和屏幕眩光有关的日益关注。随着我们对数字屏幕的工作,教育和娱乐的依赖,对我们的视觉舒适性和整体健康的影响已成为一个关键问题。我们对TCL的NXT Paper Technology进行了深入的检查 - 该解决方案专门针对这些挑战。着眼于有害的蓝色降低和反眩光特性,我们将深入研究技术的运作方式,其发展以及为什么代表个人的无与伦比选择。使用RobustTüV,SGS和Eyesafe认证以支持其质量,TCL NXT Paper(NXT Paper)脱颖而出,是屏幕技术中的重要创新。本文的目的是对与蓝光和眩光有关的问题进行彻底理解,并证明TCL NXT Paper如何提供可行的解决方案。我们还将讨论TCL如何在其运营或产品线中利用这项技术。最终,我们旨在清楚地了解TCL NXT Paper如何改善数字体验,从而在越来越多的屏幕主导的世界中增强用户舒适性和健康状况。了解蓝色浅蓝色光是可见光光谱的基本组成部分,可在380至500纳米范围内的人眼中检测到。它在所有可见光中具有最短的波长和最高的能量,其中约占所有可见光的三分之一。但是,并非所有蓝光都同样具有影响力。医学期刊1确定大多数波长范围。某些波长会严重影响我们的健康,尤其是我们的视力和睡眠方式。数字设备的广泛使用导致屏幕时间使用情况增加,这直接增加了我们对有害蓝光的暴露。最近的报告表明,平均而言,人们每天在数字屏幕前花费大约6小时37分钟,在ZS世代中的平均值甚至更高(6-24岁)。2暴露于有害蓝光的激增与几个健康问题有关。研究3表明,长时间的暴露会导致数字眼菌株,也称为计算机视觉综合征。此综合征的特征是诸如干燥的症状
(A) 果蝇 (Drosophila melanogaster) 和菠萝蜜 (D. ananassae) 中 Myc 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (顶部) 和菠萝蜜 (D. ananassae) (底部) 中目标基因 Myc 所在的 DNA 链。指向右侧的细箭头表示 Myc 在菠萝蜜 (D. ananassae) 和果蝇 (D.melanogaster) 中位于正 (+) 链上。指向与 Myc 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向 Myc 相反方向的宽基因箭头相对于细箭头位于相反链上。果蝇 (D. ananassae) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因的直系同源性。 D. ananassae 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符特定于 D. ananassae。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014 年)。D. ananassae 中 Myc 的编码区显示在用户提供的 Track(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括 NCBI RefSeq 基因的 BLAT 比对(深蓝色,D. ananassae 的 Ref-Seq 基因比对)、D. melanogaster 蛋白质的 Spaln(紫色,D. melanogaster 的 Ref-Seq 蛋白质比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性、成年雄性和沃尔巴克氏体治愈胚胎的 RNA-Seq(分别为红色、浅蓝色和粉色;D. ananassae 的 Illumina RNA-Seq 读数比对)以及使用 D. ananassae RNA-Seq 由 regtools 预测的剪接点(Graveley 等人,2011;SRP006203、SRP007906;PRJNA257286、PRJNA388952)。显示的剪接点的读取深度 >1000,支持读取为红色。(C)果蝇 Myc-PB 的点图(x 轴)与
图1:IPSC衍生的NPC的产生,中风诱导和移植。(a)左:IPSC派生的NPC的生成。右:iPSCS和NPCS(通道7)染色为Nanog和Nestin。比例尺:50UM。(b)左:NPC的神经分化。右:分化后的D26(上排)分化的NPC,对βIII-微管蛋白,S100β和DAPI染色。比例尺:50UM。(c)实验设计的示意图。(d)通过激光多普勒成像(LDI)获得的脑灌注水平。(e)右半球的相对血液灌注与中风诱导后立即记录的基线(急性)和牺牲前(43 dpi)相比。(f)中风梗塞大小的定量。左:相对于勃雷格玛(MM),针对前后(A-P)距离绘制的病变区域。右:两个治疗组的病变体积(mm 3)的箱形图。(g)描绘中风梗塞大小的3-D小鼠脑模型的示意图。比例尺:2mm。(H)使用生物发光成像进行NPC移植后细胞存活的纵向分析。(i)生物发光信号强度表示为35天的SR X10 6的每秒3个光子数量。显示的显着性水平是指天之间的比较。(J)示意图和免疫荧光表示,描绘了移植核(深蓝色)和移植物周围(浅蓝色)。hunu用于可视化移植细胞。比例尺:1mm。比例尺:2mm。(k)脑切片对hunu染色,以前到后验(A-P)顺序排列。(l)量化移植物核心和移植物周围面积。左:相对于前核(MM),绘制在前后(A-P)距离的移植面积(mm 2)。右:移植动物的平均移植体积(mm 3)的箱形图。数据显示为平均分布,其中红点表示平均值。框图表示数据的25%至75%四分位数。箱形图:图中的每个点代表一种动物。线图被绘制为平均值±SEM。使用成对的t检验(基线与中风)或未配对的t检验(车辆与NPC)评估平均差异的显着性。在E-I中,每组n = 11只小鼠;在L,每组n = 9只动物。星号表示显着性: *p <0.05。
日期:2024 年 4 月 22 日(1)版本 1.1 产品:三菱化学先进材料下述库存形状: Acetron ® MD POM-C Altron TM 1000 PC 自然色 Ertacetal ® C/3WF POM-C Ertacetal ® C LQ POM-C Ertacetal ® C POM-C 自然色、黑色(90)和蓝色 50 Ertacetal ® H POM-H 自然色和黑色 Ertacetal ® H-TF POM-H Ertalon ® 4.6 PA4.6 Ertalon ® 6 PLA PA6 自然色、黑色和蓝色 Ertalon ® 6 SA PA6 自然色和黑色 Ertalon ® 6 XAU+ PA6 Ertalon ® 66 GF30 PA66 Ertalon ® LFX PA6(绿色) Ertalon ® 66 SA-C PA66 自然色 Ertalon ® 66 SA PA66 自然色和黑色 Ertalyte ® PET 自然色、黑色和蓝色 50 Ertalyte ® TX PET Flextron TM 1055 TPE Nylatron ® 4.6 PA4.6 Nylatron ® 703XL PA6 Nylatron ® GF30 PA66 Nylatron ® GSM PA6 Nylatron ® GSM-P PA6 Nylatron ® GS PA66 Nylatron ® MC 901 HS PA6 Nylatron ® MC 901 PA6 Nylatron ® MC 903 PA6 Nylatron ® MC 907 PA6 自然色 Nylatron ® MD PA6 浅蓝色 Nylatron ® NSM PA6 Nylatron ® SLG PA6 Nylatron ® WP PA6 TIVAR ® 1000 防静电 UHMW-PE TIVAR ® 1000 ASTL UHMW-PE TIVAR ® 1000 EC UHMW-PE TIVAR ® 1000 UHMW-PE 自然色和彩色 TIVAR ® Ceram P UHMW-PE(黑色、蓝色、绿色、红色、黄色) TIVAR ® Cestidur UHMW-PE TIVAR ® CleanStat Super UHMW-PE TIVAR ® CleanStat UHMW-PE 黑色和白色 TIVAR ® DrySlide UHMW-PE TIVAR ® DS UHMW-PE TIVAR ® HOT UHMW-PE TIVAR ® HPV UHMW-PE TIVAR ® MD UHMW-PE TIVAR ® TECH UHMW-PE 据我们所知,我们在此确认,用于生产上述三菱化学先进材料等级的单体来自石化来源。如果使用动物源添加剂,则在制造过程中以及在塑料材料中进一步加工时,它们会在超过 200°C 的高温下处理更长时间。根据这些条件,并参照文件 WHO/CDS/VPH/95.145 和 EMEA/410/01 Rev. 3 – 2011 年 7 月的要求,应排除通过上述三菱化学先进材料库存形状传播 BSE(牛海绵状脑病)和 TSE(传染性海绵状脑病)。
了解解决被迫移民和流离失所者融入问题的政策非常重要。被迫移民的人天生就很脆弱,面临暴力和贫困的风险。逃离祖国时,他们往往要承受身体和心理上的创伤,然后必须应对在新地方生活的挑战,无论是在新的国家还是地区。他们定居的地方和如何适应环境对他们未来的福祉和成功都至关重要。认识到哪些政策、机构、环境和支持系统最能促进流离失所者的融入,对难民及其收容社区来说,可能具有很高的人力和经济回报。此外,随着产生难民的事件变得更加分散和突然,及时和适当地实施有效政策对地方政府和社区的价值可能会增加。最近流离失所者人数的增加最能说明研究针对难民的政策的必要性日益增加。图 1 显示,全球难民总数已从 2000 年至 2010 年间的约 1000 万至 1200 万人增加至 2022 年超过 3500 万人的历史峰值。难民人数的增长大多发生在过去 11 年内,即 2013 年以来。乌克兰、叙利亚、委内瑞拉、南苏丹和阿富汗的局部危机对难民人数激增起了很大作用。不幸的是,这些危机的根源(战争、冲突、气候事件、政治迫害)可能会持续存在;这种情况尤其如此,因为气候变化给本已贫穷的国家带来了资源压力,而且与这些事件相关的政治不稳定性加剧(见 Hsiang, Meng 和 Cane,2011 年以及 Burke, Hsiang 和 Miguel,2015 年)。在大多数此类危机中,许多人在国内流离失所,而另一大部分人仍留在其原籍国附近,通常是发展中国家。一小部分人到达了有正式难民接收计划的发达国家。因此,难民融入无论在发展中国家还是发达国家都很重要。图 1 显示了难民的分布情况,按人均收入分为四类目的地国:低收入、中低收入、中高收入和高收入。1 图中显示,大多数难民不在高收入国家(该组以黄色表示)。2020 年,只有 20% 的难民在高收入国家,而 50% 的难民在低收入和中低收入国家(橙色和蓝色表示的组分别以橙色和浅蓝色表示)。然而,自 2017 年以来,居住在高收入和中高收入国家的难民比例有所增加,因此在富裕国家融入的前景变得越来越重要。成功到达发达国家的难民往往具有更高的人力
(A) 果蝇 (Drosophila melanogaster) 和果蝇 (D. yakuba) 中 eIF4E1 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (顶部) 和果蝇 (D. yakuba) (底部) 基因组中参考基因 eIF4E1 所在的 DNA 链。指向右侧的细箭头表示 eIF4E1 在果蝇 (D. melanogaster) 中位于正 (+) 链上,指向左侧的细箭头表示 eIF4E1 在果蝇 (D. yakuba) 中位于负 (-) 链上。指向与 eIF4E1 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向与 eIF4E1 相反方向的宽基因箭头相对于细箭头位于相反链上。果蝇 (D. yakuba) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因的直系同源。 D. yakuba 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符特定于 D. yakuba。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014 年)。D. yakuba 中 eIF4E1 的编码区显示在用户提供的 Track(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括 NCBI RefSeq 基因的 BLAT 比对(深蓝色,D. yakuba 的 Ref-Seq 基因比对)、D. melanogaster 蛋白质的 Spaln(紫色,D. melanogaster 的 Ref-Seq 蛋白质比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性和成年雄性的 RNA-Seq(分别为红色和浅蓝色;D. yakuba 的 Illumina RNA-Seq 读段比对)以及使用 D. yakuba RNA-Seq (SRP006203 - Graveley et al, 2010) 通过 regtools 预测的剪接点。显示的剪接点分别具有 232、500-999 和 >1000 的读取深度,支持读取为粉色、棕色和红色。 (C) 果蝇 (D. melanogaster) 中的 eIF4E1-PB (x 轴) 与果蝇 (D. yakuba) 中的直系同源肽 (y 轴) 的点图。左侧和底部表示氨基酸编号;顶部和右侧表示 CDS 编号,CDS 也以交替颜色突出显示。序列相似性降低的区域用红色圈出。 (D) 果蝇 (D. melanogaster) 中的 eIF4E1-PC (x 轴) 与果蝇 (D. yakuba) 中的直系同源肽 (y 轴) 的点图。序列相似性降低的区域用红色圈出。
(A) 果蝇 (Drosophila melanogaster) 和果蝇 (D. miranda) 中 Pten 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (上) 和果蝇 (D. miranda) (下) 中目标基因 Pten 所在的 DNA 链。指向右侧的细箭头表示 Pten 在果蝇 (D. miranda) 中位于正 (+) 链上,指向左侧的细箭头表示 Pten 在果蝇 (D. melanogaster) 中位于负 (-) 链上。指向与 Pten 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向 Pten 反方向的宽基因箭头相对于细箭头位于反链上。果蝇 (D. miranda) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因直系同源,而黑色基因箭头表示非直系同源。灰色箭头表示在两个基因组邻域中都存在但不是同源的基因(在本例中为 Ror),在 D. miranda 中位于 Pten 的上游,但在 D. melanogaster 中位于 Pten 的下游。D. miranda 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符是 D. miranda 特有的。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014)。D. miranda 中 Pten 的编码区显示在用户提供的轨道(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括果蝇 (D. melanogaster) 蛋白质的 Spaln(紫色,果蝇 (D. melanogaster) 的 Ref-Seq 蛋白质比对)、NCBI RefSeq 基因的 BLAT 比对(深蓝色,果蝇 (D. miranda) 的 Ref-Seq 基因比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性和成年雄性的 RNA-Seq(分别为红色和浅蓝色;果蝇 (D. miranda) 的 Illumina RNA-Seq 读段比对)以及使用果蝇 (D. miranda) RNA-Seq (SRP009365) 由 regtools 预测的剪接点。所示的剪接点具有最小读取深度 10,其中 10-49、50-99 和 100-499 支持读取分别以蓝色、绿色和粉色表示。 (C) 果蝇 Pten-PB(x 轴)与果蝇直系同源肽(y 轴)的点图。左侧和底部标明氨基酸编号;顶部和右侧标明 CDS 编号,CDS 也以交替颜色突出显示。点图中的间隙表示序列相似性较低的区域。
图 1:在其专属经济区研究和可视化中考虑的 4 个太平洋岛屿 OCT 的位置。22 图 2:海洋空间划界的国际原则(来源:Géoconfluences 2017)。24 图3:新喀里多尼亚具体海洋行政边界(来源:新喀里多尼亚政府)。25 图 4:太平洋岛屿 22 个国家和地区的 IUCN 红色名录中按分类群列出的物种数量(来源:根据 Kinch 等人的数据。2010)。27 图 5:太平洋岛屿和领土的鱼类消费水平(公斤/居民/年)(来源:Bell 等人。2009)。HIES(家庭收入和支出调查)数据来自人口普查调查; SES(社会经济调查)数据来自社会经济调查。28 图 6:SPREP 制定的 2014-2020 年太平洋岛屿地区自然保护和保护区框架的目标(来源:基于 SPREP 2015)。29 图 7:该地区海洋保护区地图(来源:SPREP)。灰线:专属经济区边界;浅蓝色:澳大利亚、北马里亚纳联邦、库克群岛、基里巴斯、新喀里多尼亚、新西兰、帕劳、皮特凯恩(英国)和美国宣布的大型海洋保护区;深蓝色圆点:位于不同国家和领土内的海洋保护区的存在。30 图8:取自新喀里多尼亚政府命令草案的地图,该命令草案将珊瑚海海洋自然公园的礁湖区域划分为整体保护区或自然保护区。(来源:新喀里多尼亚政府)。33 图 9:新喀里多尼亚海洋保护区的类型和数量(此处包括大珊瑚海洋公园 MPA)(来源:根据 ISEE 2016)。35 图 10:新喀里多尼亚各省的海洋保护区数量和居民数量(不包括联合国教科文组织区、自然公园和岛屿省)。35 图 11:法属波利尼西亚海洋保护区(不包括大型海洋保护区)的类型和数量(来源:根据 Brugneaux 等人的研究2010;空军基地 2018)。40 图 12:波利尼西亚每个地区的保护区数量和居民数量。41 图 13:海上路线,确定法国 OCT 在太平洋岛屿的关注区域(来源:Anon 2015)。5742 图 14:新喀里多尼亚武装部队的监视手段 - 添加图像中缺少的多任务大楼 (B2M) Entrecasteaux(来源:FANC)。44 图 15:新喀里多尼亚除 FANC 之外的其他服务和管理机构的监测和干预手段(来源:FANC)。45 图 16:武装部队拦截侵犯新喀里多尼亚专属经济区的越南“蓝船”(来源:www.colsbleus.fr)。46 图17:法属波利尼西亚共同海事中心内的海事信息融合中心。48 图 18:专属经济区以及皮特凯恩群岛海洋保护区的划界(来源:皮尤慈善信托基金)。49 图 19:使用波浪能和太阳能的地面无人机(来自 Liquid Robotics 的波浪滑翔机)(来源:Liquid Robotics)。50 图 20:来自 Wave Glider 相机并通过卫星传输的照片(来源:Liquid Robotics)。50 图21:太平洋岛屿国家和地区沿海捕捞活动(沿海渔业)和近海捕捞活动(大洋渔业)的多样性(来源:根据CPS)。51 图 22:太平洋岛屿 22 个国家和地区不同捕捞类型对总渔获量的贡献(来源:基于 Gillett 2016)。52 图 23:太平洋岛屿国家和地区的渔获量(以吨为单位)(来源:基于 Gillett 2016)。53 图 24:VMS 渔船监测链示意图(来源:www.fish.wa.gov.au)。54 图 25:太平洋 4 个欧洲 OCT 地区的捕捞量(吨)和价值(百万 FCFP)(来源:根据 Gillet 2016,按 100 美元折算)金融理财师)。55 图26:法属波利尼西亚渔港(左)和新喀里多尼亚自治港渔码头示意图(来源:帕皮提自治港和新喀里多尼亚DAM)。