安全测试是自动驾驶系统(ADSS)开发的基本支柱。为了确保ADS的安全性,生成各种安全性的测试方案至关重要。现有广告从业人员主要集中于在模拟环境中重现现实世界中的交通事故以创建测试场景,但必须强调,由于人类驾驶和自主驾驶之间的差异,这些事故中的许多事故并未直接导致对ADS的安全违规。更重要的是,我们观察到,某些无事故现实世界的情况不仅可以导致广告中的不良行为,而且还可以在模拟测试期间利用违反广告的行为。因此,从常规交通情况(即无碰撞场景)中发现安全侵犯ADS的行为至关重要,以确保自动驾驶汽车(AVS)的安全性。我们介绍了Leade,这是一种实现上述目标的新方法。它会自动从交易视频中生成抽象和具体的方案。然后,它优化了这些场景,以在人类驾驶安全工作的语义一致方案中搜索对广告的安全侵犯。具体来说,Leade增强了大型多模型(LMM)的能力,可以通过流量视频准确构建抽象场景,并通过多模式的几种思想链(COT)生成具体场景。我们在Apollo的工业级4级广告上实施并评估Leade。基于它们,Leade评估并增加了自我车辆(即,与正在测试的ADS连接的车辆)和在语义同等场景中进行人类驾驶之间的行为差异(这里等效语义意味着测试场景中的每个参与者都具有与原始实际交通情况中相同的抽象行为)。实验结果表明,与最先进的广告场景生成方法相比,Leade可以准确地从交通视频中生成测试场景,并有效地发现了具有相同无事故交通情况语义语义的测试场景中更多类型的安全违反Apollo的行为。
先决条件 为了使用 CLI 访问设备,需要支持 SSH 的实用程序。CLI 访问与操作系统无关。您可以使用 Windows®、MAC® 或 Linux®。命令终端应支持 SSH。在 Windows® 中,您可以使用第三方应用程序(如 Putty),而 MAC® 和 Linux® 命令终端已经支持 SSH。SSH 使用的默认端口是 22。请使用在 Quantum Rudder(https://cc.qntmnet.com)中创建站点时定义的相同设备用户名和密码,对于独立用户,请使用预配置的设备登录用户名和密码。我们使用 admin 作为设备用户名,192.168.25.6 是接入点 IP 地址。SSH 命令示例(IP 地址 192.168.25.6 仅在测试场景中使用):command_prompt> sshadmin@192.168.25.6 {按 Enter 键} 如何访问 CLI?使用 Windows® 平台?步骤 1:下载适用于 Windows 的 Putty 并按照以下步骤操作(对于测试场景,我们使用 192.168.25.6 作为接入点的分配 IP 地址)。
摘要 - 在自主驾驶系统(ADS)测试中,测试场景是预定的,特定的事件序列,包括静态实体(例如道路形状和交通标志)和动态实体(例如,交通信号灯和周围车辆的轨迹)。通过根据测试方案创建环境并在该环境中运行正在测试的广告,我们可以验证广告是否造成任何违反安全性(例如,与其他车辆的碰撞)。由于与现实世界中的测试方案相关的高成本和风险,基于模拟的测试依赖于可以创建各种虚拟驾驶环境的驱动模拟器,因此引起了极大的关注。由于模拟环境可以比现实世界更确定性,因此基于模拟的测试可以提供非粉状测试,即,从理论上讲,相同的测试场景(和相同的ADS)相同的测试结果。但是,在基于模拟的广告测试中,我们真的没有片状测试吗?本文使用两个广泛使用的开源驾驶模拟器:CARLA和MetAdrive在基于模拟的ADS测试中进行经验研究。我们的结果表明,令人惊讶的是,由于卡拉中的非确定模拟,基准测试方案的31.3%可能是片状的,而元素没有产生任何片状测试。我们进一步讨论了非确定模拟的潜在原因,片状测试在ADS测试中的含义以及减轻未来工作中片状的实用策略。
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每台无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电提供调制信号来测试无线电的 RF 输入,并验证无线电发出的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电是否正常工作。
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每种无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电设备的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电设备提供调制信号来测试无线电设备的 RF 输入,并验证无线电设备的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电设备是否正常工作。
人工智能 (AI) 领域已经发展到能够提供内容提供商、网络运营商、终端供应商、系统设计人员等数十年来一直寻求的那种自动视频质量分析 (VQA) 的地步。它采用整体、端到端的视图,并支持各种测试场景,例如测试原型手机或流媒体播放器,以分析其在来自多个服务提供商的多种网络技术上提供的视频 QoE。另一个示例是使用 AI VQA 来确保新的终端软件版本或压缩技术不会破坏 QoE。无论在何处引入工件,AI VQA 都能够量化 QoE 影响。
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每台无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电提供调制信号来测试无线电的 RF 输入,并验证无线电发出的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电是否正常工作。
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每台无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电提供调制信号来测试无线电的 RF 输入,并验证无线电发出的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电是否正常工作。
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每种无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电设备的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电设备提供调制信号来测试无线电设备的 RF 输入,并验证无线电设备的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电设备是否正常工作。
2023 年 12 月的五天时间里,测试人员在试验场的各种测试场景中发射了八发全弹:白天和夜间射击,针对移动和静态目标,例如模拟 SA-22 和真正的道奇达科他卡车,距离不同,悬停在近距离到 30 多公里外。在不止一次射击中,阿帕奇在导弹加速冲向目标时降低高度甚至旋转 180 度,以故意与炮弹失去联系,以验证它是否仍会在自动跟踪中击中目标:在一次测试中,在撞击前重新建立了联系,而在另一次测试中,故意没有重新建立联系。长钉导弹还能够