摘要 本文报告了 EURAMET 项目编号 1431 的首批成果,该项目于 2017 年启动,目标是通过实验确定由于不同风洞中各种边界条件导致的叶轮和风杯风速计校准结果的系统偏差,尤其是在缺乏理论模型的开放式测试段风洞中。为此,在 14 个风洞中校准了 3 个不同尺寸的叶轮风速计和 2 个风杯风速计,这些风洞的测试段类型和尺寸从直径 15 厘米到 100 厘米不等。本文首次展示了最近完成的测量中的校准数据。最重要的是,测量了 5 个测试风速计前方的速度扰动场,以避免边界条件的影响与因将参考仪表放置在受测试仪表影响的区域而导致的其他偏差源混合。本文报告的速度扰动场可用于所有空速校准实验室,使其了解这些偏差有多大,以及参考仪表的最佳位置和距离是多少。
主要领域:机械与航空航天工程 摘要:近年来,UAS(无人机系统)通过集成先进的摄像机、传感器和硬件系统获得了改进的功能;然而,UAS 仍然缺乏检测和记录音频信号的有效手段。这部分是由于硬件的物理规模和硬件集成到 UAS 中的复杂性。当前的研究是将高增益抛物面麦克风集成到 UAV(无人机)中用于声学勘测的更大规模研究工作的一部分。由于嵌入式抛物面天线与自由流掠流之间的气动相互作用,需要使用挡风玻璃将天线整平到飞机上。当前的研究开发了一种表征方法,通过该方法可以优化各种挡风玻璃的设计和配置。该方法测量候选挡风玻璃的法向入射声传输损耗 (STL) 以及其在一系列流速下安装时产生的流体动力噪声的增加。在俄克拉荷马州立大学的低速风洞上设计并安装了测试装置。测试设备使用附在风洞测试段地板上的“静音箱”。风洞测试段和静音箱之间的直通窗口允许在两个环境之间安装候选挡风玻璃。安装在风洞测试段和静音箱内的麦克风记录各种流速下的声谱,范围在每秒 36 至 81 英尺之间。制造了一个张紧的 Kevlar® 挡风玻璃验证样本来验证系统性能。STL 频谱是通过比较 Kevlar® 膜两侧麦克风的信号来测量的。将流离场景的法向入射 STL 结果与其他研究中对相同材料在张紧状态下的结果进行比较。在几种流速下还测量了流入传输损耗频谱数据以及膜引起的流动噪声的增加。该系统已被证明可以产生与流入和流离测试配置的参考数据一致的 STL 数据,并且能够检测到验证样本挡风玻璃产生的流动诱导噪声的增加。
悬停四旋翼飞行器在各种湍流风况下的定位保持最近备受关注,因为它有可能在复杂环境中应用。已经开发出各种类型的控制算法来提高四旋翼飞行器在这种风况下的性能。这些需要通过飞行四旋翼飞行器本身进行测试和验证。一种快速且低成本的解决方案是通过改造现有风洞来建立测试台,以重现这种风况。为了进行此类实验,马来西亚博特拉大学 (UPM) 将开放式喷射风洞连接到现有的开环风洞,该风洞最初的测试面积为 1 米乘 1 米。通过连接具有发散形状的开放式喷射风洞,测试段面积的直径增加到 2 米,确保有足够的空间来操纵和悬停实验四旋翼飞行器。在测试段前连接一个沉降室来表征输出风。开口处的最大风速为 8 米/秒。利用风速计对延伸风洞的流动特性进行了分析,获得了距开口四个不同距离处的速度分布,发现风速分布和湍流强度模拟了室外风湍流条件,可用于测试四旋翼悬停控制算法。
风洞是一种用于空气动力学测试的实验装置,空气通过不同面积的管道吹入或吸入,其目的是模拟与飞行环境不同的气流条件。它提供了一个条件环境来测试空气动力学体,以提取控制流动的许多参数。风洞实验不仅限于飞机,还用于汽车、直升机、航天器再入、高层建筑和摩天大楼设计。风洞可以在从亚音速(M < 0.4)到高超音速(M > 5)[1] 的所有速度下运行。它们根据气流方向、测试段大小等进行分类。其中,开路风洞是本研究中的热门话题。开路采用周围空气作为流体介质。任何飞行器的空气动力学设计所需的主要数据来源是 CFD、风洞试验以及飞行试验,这些试验通常采用简化的几何模型 [11]。决定空气动力学作为一门科学的成功及其广泛应用的关键研究方法
在铺设初始测试段之前至少 10 个工作日,承包商应提交制造商的文献资料和建议、树脂系统和硅藻土装运的材料安全数据表、树脂样品以及 HMWM 树脂系统铺设计划。HMWM 树脂系统铺设计划应包括:(1)每座桥梁的工作和测试时间表(2)表面准备要求(3)涂抹 HMWM 树脂的设备和工艺说明(4)验证涂抹率的工艺说明。(5)改变涂抹率的工艺说明。(6)HMWM 树脂的凝胶时间和最终固化时间范围(7)将使用的吸收材料。(8)涂抹和清除多余沙子和吸收材料的设备说明(9)清除 HMWM 树脂的程序,包括设备。(10)HMWM 树脂组分和吸收材料的储存和处理(11)多余 HMWM 树脂和容器的处理在 HMWM 树脂系统铺设计划获得书面批准之前,不得开始工作。
文丘里流量计,使用强力风扇吹风。它是机械和航空航天工程实验室研究全尺寸或缩小版汽车或飞机模型周围气流行为的典型设备。因此,它在空气动力学设计中起着至关重要的作用,节省了实时操作过程中因故障而产生的成本和时间。实验室使用中小型风洞进行实验和研究。虽然与商用风洞相比,这些风洞的规模相对较小,但满足其准确和精确的设计和制造规格是一项相当艰巨的任务。本文回顾了与此类低亚音速开路风洞的设计、制造和测试方面相关的几项先前研究。它侧重于各种风洞组件的设计方面,例如测试段、收缩锥、扩散器、驱动系统和沉降室。它还揭示了用于制造这些风洞的材料。还简要讨论了实验测试和 CFD 模拟的结果。
风洞是一种用于空气动力学测试的实验装置,空气通过不同面积的管道吹入或吸入,其目的是模拟与飞行环境不同的气流条件。它提供了一个条件环境来测试空气动力学体,以提取控制流动的许多参数。风洞实验不仅限于飞机,还用于汽车、直升机、航天器再入、高层建筑和摩天大楼设计。风洞可以在从亚音速(M < 0.4)到高超音速(M > 5)[1] 的所有速度下运行。它们根据气流方向、测试段大小等进行分类。其中,开路风洞是本研究中的热门话题。开路采用周围空气作为流体介质。任何飞行器的空气动力学设计所需的主要数据来源是 CFD、风洞试验以及飞行试验,这些试验通常采用简化的几何模型 [11]。决定空气动力学作为一门科学的成功及其广泛应用的关键研究方法
这项工作证明了一种新型横向阵风发生器的可行性,该发生器能够产生可控的时变阵风,而不会增加流动设施大面积内的湍流水平。新的阵风发生器概念基于涡流发生器阵列 ( VGA ),该阵列沿着设施测试段的某一给定流向位置的一面墙壁布置。使用这种装置,可以在风洞中演示阶梯式阵风和幅度为自由流速度 5.7% 的正弦阵风。对于 10 m ∕ s 的自由流速度,正弦阵风在自由流方向上产生几乎纯谐振动,角度为 3.25 度,频率为 2 Hz。简化的涡流阵列模型被证明是设计新型阵风发生器的可行工具。本研究重点展示 VGA 阵风发生器的概念,同时将发生器的设计优化和阵风强度和均匀性的极限探索留待未来工作。
摘要 — 风洞是一种管状装置,其横截面逐渐变化,就像文丘里流量计一样,并具有使用强力风扇吹风的功能。它是机械和航空航天工程实验室研究全尺寸或缩小版汽车或飞机模型周围气流行为的典型设备。因此,它在空气动力学设计中起着至关重要的作用,节省了实时运行过程中因故障而产生的成本和时间。实验室使用中小型风洞进行实验和研究。虽然与商用风洞相比,这些风洞的尺寸相对较小,但满足其准确和精确的设计和制造规范是一项相当艰巨的任务。本文回顾了与此类低亚音速开路风洞的设计、制造和测试方面相关的几项先前研究。它侧重于各种风洞组件的设计方面,例如测试段、收缩锥、扩散器、驱动系统和沉降室。文中还介绍了制造该器件所用的材料。文中还简要讨论了实验测试和 CFD 模拟的结果。
德荷风洞基金会 (DNW) 成立于 1976 年,由荷兰国家航空航天实验室 (NLR) 和德国航空航天中心 (DLR) 共同成立,是荷兰法律下的一个非营利组织。该组织的主要目标是为工业、政府和研究领域的客户提供广泛的风洞测试和模拟技术。DNW 拥有欧洲最大的低速风洞,提供开放式和封闭式测试段选项。此外,DLR 和 NLR 的主要航空风洞也由 DNW 组织全面整合和管理。风洞分为两个业务部门:“Noordoostpolder/阿姆斯特丹”(NOP/ASD)和“Göttingen und Köln”(GUK)。DNW 为空气动力学研究和开发项目的实验模拟要求提供解决方案。这些项目可以源自研究界(大学、研究机构或研究联盟),也可以源自新产品的工业开发过程。大多数工业发展项目来自航空工业,但汽车、土木工程、造船和体育行业也受益于 DNW 的能力。为了高效灵活地运营,DNW 在统一管理和监督下采用分散结构。其管理机构位于 Marknesse,位于其最大的风洞 DNW-LLF 所在地。DNW 董事会是基金会的监督机构,它考虑